Please use this identifier to cite or link to this item: http://archive.cmb.ac.lk:8080/xmlui/handle/70130/6057
Title: STAR-CRITICAL RAMSEY NUMBERS FOR CYCLES VERSUS K4
Authors: Jayawardene, Chula J.
Narvaez, David
Radziszowski, Stanis law P.
Keywords: Ramsey theory, star-critical Ramsey numbers.
Issue Date: 2021
Citation: Jayawardene,C.,Narváez,D. & Radziszowski,S.(2021).Star-Critical Ramsey Numbers for Cycles Versus K4. Discussiones Mathematicae Graph Theory,41(2) 381-390. https://doi.org/10.7151/dmgt.2190
Abstract: Given three graphs G, H and K we write K → (G, H), if in any red/blue coloring of the edges of K there exists a red copy of G or a blue copy of H. The Ramsey number r(G, H) is defined as the smallest natural number n such that Kn → (G, H) and the star-critical Ramsey number r∗(G, H) is defined as the smallest positive integer k such that Kn−1 ⊔ K1,k → (G, H), where n is the Ramsey number r(G, H). When n ≥ 3, we show that r∗(Cn, K4) = 2n except for r∗(C3, K4) = 8 and r∗(C4, K4) = 9. We also characterize all Ramsey critical r(Cn, K4) graphs.
URI: https://doi.org/10.7151/dmgt.2190
http://archive.cmb.ac.lk:8080/xmlui/handle/70130/6057
Appears in Collections:Department of Mathematics

Files in This Item:
File Description SizeFormat 
10.7151_dmgt.2190.pdf372.46 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.