Please use this identifier to cite or link to this item:
http://archive.cmb.ac.lk:8080/xmlui/handle/70130/6057
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jayawardene, Chula J. | - |
dc.contributor.author | Narvaez, David | - |
dc.contributor.author | Radziszowski, Stanis law P. | - |
dc.date.accessioned | 2021-09-23T09:45:54Z | - |
dc.date.available | 2021-09-23T09:45:54Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Jayawardene,C.,Narváez,D. & Radziszowski,S.(2021).Star-Critical Ramsey Numbers for Cycles Versus K4. Discussiones Mathematicae Graph Theory,41(2) 381-390. https://doi.org/10.7151/dmgt.2190 | en_US |
dc.identifier.uri | https://doi.org/10.7151/dmgt.2190 | - |
dc.identifier.uri | http://archive.cmb.ac.lk:8080/xmlui/handle/70130/6057 | - |
dc.description.abstract | Given three graphs G, H and K we write K → (G, H), if in any red/blue coloring of the edges of K there exists a red copy of G or a blue copy of H. The Ramsey number r(G, H) is defined as the smallest natural number n such that Kn → (G, H) and the star-critical Ramsey number r∗(G, H) is defined as the smallest positive integer k such that Kn−1 ⊔ K1,k → (G, H), where n is the Ramsey number r(G, H). When n ≥ 3, we show that r∗(Cn, K4) = 2n except for r∗(C3, K4) = 8 and r∗(C4, K4) = 9. We also characterize all Ramsey critical r(Cn, K4) graphs. | en_US |
dc.language.iso | en | en_US |
dc.subject | Ramsey theory, star-critical Ramsey numbers. | en_US |
dc.title | STAR-CRITICAL RAMSEY NUMBERS FOR CYCLES VERSUS K4 | en_US |
dc.type | Article | en_US |
Appears in Collections: | Department of Mathematics |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10.7151_dmgt.2190.pdf | 372.46 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.