Please use this identifier to cite or link to this item: http://archive.cmb.ac.lk:8080/xmlui/handle/70130/6057
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJayawardene, Chula J.-
dc.contributor.authorNarvaez, David-
dc.contributor.authorRadziszowski, Stanis law P.-
dc.date.accessioned2021-09-23T09:45:54Z-
dc.date.available2021-09-23T09:45:54Z-
dc.date.issued2021-
dc.identifier.citationJayawardene,C.,Narváez,D. & Radziszowski,S.(2021).Star-Critical Ramsey Numbers for Cycles Versus K4. Discussiones Mathematicae Graph Theory,41(2) 381-390. https://doi.org/10.7151/dmgt.2190en_US
dc.identifier.urihttps://doi.org/10.7151/dmgt.2190-
dc.identifier.urihttp://archive.cmb.ac.lk:8080/xmlui/handle/70130/6057-
dc.description.abstractGiven three graphs G, H and K we write K → (G, H), if in any red/blue coloring of the edges of K there exists a red copy of G or a blue copy of H. The Ramsey number r(G, H) is defined as the smallest natural number n such that Kn → (G, H) and the star-critical Ramsey number r∗(G, H) is defined as the smallest positive integer k such that Kn−1 ⊔ K1,k → (G, H), where n is the Ramsey number r(G, H). When n ≥ 3, we show that r∗(Cn, K4) = 2n except for r∗(C3, K4) = 8 and r∗(C4, K4) = 9. We also characterize all Ramsey critical r(Cn, K4) graphs.en_US
dc.language.isoenen_US
dc.subjectRamsey theory, star-critical Ramsey numbers.en_US
dc.titleSTAR-CRITICAL RAMSEY NUMBERS FOR CYCLES VERSUS K4en_US
dc.typeArticleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
File Description SizeFormat 
10.7151_dmgt.2190.pdf372.46 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.