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Abstract

Most analytically driven interest rate derivations initiated in life contingencies are deemed
fair to life insurers in meeting solvency requirements which arguably may not be satisfactorily
fair to the insured. The arguments presented in this paper are written from the practical
underwriting perspectives and are aimed at circumventing the comparatively intractable
process of interest rate computations. The objectives are to obtain the hedge ratio each term
of which is based on the uniform distribution of death assumption, use this ratio to derive
power series in terms of Bernoulli numbers, estimate the risk-free interest rate intensities from
the power series and compare the exact result with the estimated results. Given a tolerance
limit of 0.4%, computational evidence shows that the absolute deviation of the exact from the
estimated interest rate is less than 0.4%, it may be fairer to the insured in the performance of
actuarial valuation involving present values computations.

Keywords: Life Annuities, Force of Interest, Power Series, Bernoulli Numbers,
underwriting, Valuations

JEL Classification: C1, C4, C5
Introduction

Interest rate is widely applied to perform valuation in order to price life insurance
products, especially in computing interest rate driven life annuities, life insurance to
ensure solvency of life insurers through sufficient reserves. In life insurance valuation,
interest rate is assumed constant, particularly in the default free deterministic market,
where premium setting is characterized by the principle of equivalence. Past works which
concentrated on Taylor’s series to estimate interest rate intensity could not successively
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arrive at a closed form formula and could not investigate whether the results were
reasonably accurate for the valuation of life insurance underwriting purposes.

Actuaries and other insurance practitioners pick predetermined interest rate a priori to
soothe life insurance valuation. This constitutes a problem in the quest for the
development of functional forms of the deterministic interest rate function. In the field of
computational insurance, efficient estimation technique is required to price complicated
policies and calibrate actuarial models. These two areas rely on robust numerical
techniques and rapidly efficient modelling and computations of interest rate. Interest rate
scenario represents a very critical assumption of life insurance cash flow testing results.
The deterministic market is default free in classical life contingency domain and
consequently, the valuation of interest rate is constant. This study is timely for the
Nigerian annuity market as the federal Government had recently enacted laws to regulate
the Nigerian annuity market. The default free market interest rate scenarios are employed
in life insurance since interest rates are fixed during actuarial valuation. Although the
deterministic interest rate scenario may not moderately represent adverse conditions,
extant actuarial literature contains no extensive formal exploration of this area.

Literature review

As a result of the recent instability in the insurance markets, the insurance companies try
to optimize and accelerate underwriting operational processes to remain competitive. The
attainment of this goal requires a deep knowledge of interest rate modelling. Following
Udoye et al. (2021), a great deal of effort has been deployed to obtain new algorithms and
new financial models or even modify the existing models so as to defuse their complexity
while still maintaining the same level of computational accuracy. An emerging
computationally intensive problem that life insurers encounter is the modelling of interest
rate applicable in life insurance valuation.

There is a gradual paradigm shift of insurance sector from the direct regulatory control
system to a more liberalized environment, hence requiring new financial risk
management. The regulatory authorities need to employ improved and advanced
techniques for regulating product development through robust interest rate mechanism.
Insurance institutions are the main investors and their credibility has marked implications
on the financial stability; as such the main reference point of an insurer is its financial
health or solvency. The obligation of an insurer is the operational underwriting processes
and their expected expenses which are often computed using actuarial techniques for the
protection of the policy holders and to guarantee of the stability of the insurance market.

Present value problems driven by interest rate computations represent a crucial analytical
tool in life insurance mathematics. Following observations in Panjer and Bellhouse
(1980); Belhouse and Panjer (1981) and Jothi (2009) and Kellison (2009), the two major
applications of this area concern issues relating to estimation and modelling. The latter
has a longer pedigree as studied in this paper and becomes an extensive area of life
contingencies (Anggraeni et al. 2023). Following observations in Kellison (2009),
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McCutcheon and Scott (1986), the deepest form of this estimation problems remains a
subject of classical life insurance methodologies. In practice, crucial transactions where
interest rate estimation is applicable may possibly become analytically intractable in the
quest for a closed form solution (Jothi, 2009). Furthermore, in the computation of the

present value e of benefits, the value of & may be very high and may not be consistent

with the insured’s benefits. Consequently, in this instance estimation methods for o
becomes an inevitable mathematical tool.

From the observation raised, the application of the Euler-Maclaurin series appears to be
an interesting estimation technique in interest rate modelling. To embed this in the process
of insurance valuation, the nominal rate of interest approach can be perceived as an
approximation of the force of interest by the truncation of the Euler Maclaurin series as
appropriate. Interest rate estimations are important based on two major reasons. The first
reason evolves from the gap between numerical estimations and analytical investigation.
While numerical analysis sheds light on definite interest rate scenarios analytical
techniques considers important properties and general behaviour.

The latter includes asymptotic behaviour of solution as the interest rates become large or
infinitesimally small. The second reason is the challenge of implementing the
approximation schemes. Therefore, this paper contributes in both ways as the results
evince better grasp of such estimation techniques. Consequently, the effect of the Euler
Maclaurin series on the behaviour of nominal rate of interest in the short and long run is
investigated. This method is important because of the possibility of generating a closed
form solution that serves as a reference point in a more complex interest rate scenario.
According to Anggraeni et al. (2023), actuarial valuation computation can be perceived
as a consolidation of future cash flows projects anticipated cash flows on a yearly basis.
The cash flows are analyzed on the basis that survival and mortality probabilities and
economic assumptions of salary inflation and pension increases. The premium,
investment incomes and benefit outgone in each year are then discounted using the
valuation rate of interest effective the date of valuation to obtain the present values of
premium income and benefit outgone.

In Anggraeni et al. (2023), the rationale behind performing actuarial valuation of a
scheme is to investigate how well the assets cover the liabilities. This procedure is
important since a pension plan cannot continue indefinitely. If a scheme is discounted, its
assets at that material time is crucial. Consequently, if the plan asset is not sufficient,
members will not earn the expected benefits since the examination of present values may
not necessarily elicit the long-run benefit of the cash flows being obtained.

It is imperative to discount the future payments at the valuation rate of interest to obtain
an appropriate present value for actuarial computations. In Jothi (2009) and Kellison
(2009), a discounted cash flow process is applied for future benefit payments and
premiums for future investment proceeds. The advantage of this technique is that assets
are valued in a way that those are consistent with the actuarial liabilities. In actuarial life
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problems, discounting is based on the theory of interest rate intensities; this gives vent
to the need for its thorough examination. The objectives are (i) to obtain the hedge ratio

Zx I A, each term of which is based on the uniform distribution of death assumption (i)

to use this ratio to derive power series in terms of Bernoulli numbers (iii) to estimate the
risk-free interest rate intensities from the power series and (iv) to compare the exact result
with the estimated results.

The Present value problem

Let d define the discount rate, then the present value PV of asum C duein s years
at the nominal rate of discount d convertible n times per year is defined as

PV =C (1—%} (1a)

IimPV = Iim{c [1—%) J (1b)

=PV =C Iim((l—gj ] (1c)
n—oo n

~(ns)[ =2

— PV =C rl]in;(l—%j & (1d)
{0 (=ds)

PV =C m(l—%j @ (1e)

n—o0 n

(~ds)
]
=PV =C I|m[1+(——D n (1f)

Letting —nNx =d
1 (—ds)
limPV =C {Iim(1+x)x} (19)
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The present value of an obligation of C duein s years’ time at d nominal rate of discount

convertible continuously is obtained as PV = Ce™®

Justifications for modelling the force of interest

Modelling the force of interest is a key component in the valuation of life insurance
products, as it is a crucial tool for calculating the time value of money over the policy’s
lifetime. The force of interest is a continuous rate of interest that is used to model how
the value of money changes over time in a life insurance contract. Below are several key
reasons why it is important to model the force of interest in life insurance valuation:

The force of interest allows actuaries to discount future cash flows such as premiums,
claims, or benefits in a continuous manner. This is important because life insurance
contracts involve long time horizons, with premiums and benefits occurring over many
years or decades. A continuous discounting model ensures that the time value of money
is reflected accurately.

The force of interest is based on continuous compounding, which aligns with modern
financial theory. Continuous compounding better approximates real-world interest rate
movements and provides a more precise measure for pricing and valuing long-term
financial contracts, such as life insurance.

Life insurance policies involve long-term commitments. The force of interest quantifies
how the value of money changes over time due to interest accumulation. By applying the
force of interest, actuaries can assess the time value of future cash flows, accounting for
inflation, opportunity cost, and investment returns.

Using the force of interest allows for more flexibility in modeling interest rate
environments and investment strategies. It provides a continuous and smooth
representation of interest rate changes over time, as opposed to discrete models (such as
annual compounding) that may introduce artificial discontinuities in the valuation
process.

The force of interest can be combined with stochastic interest rate models, which allow
actuaries to assess the impact of interest rate fluctuations on the valuation of life insurance
products. This is particularly useful when testing different economic scenarios, such as
changes in interest rates, inflation, or market volatility.

In life insurance, the force of interest is integral to both pricing and reserving. For pricing,
it helps determining the appropriate premiums for policyholders given the time value of
benefits and expenses. For reserving, it allows insurers to calculate the present value of
future policyholder obligations, ensuring that they hold sufficient reserves to meet future
claims.
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The continuous nature of the force of interest better reflects the realities of financial
markets where interest rates tend to change continuously rather than in discrete time
periods. It provides a closer approximation of actual investment returns, which tend to be
realized continuously in practice (e.g reinvestment of cash flows, dividends, etc.).

Life insurance policies typically have long durations, and the force of interest helps
insurers plan for future obligations over those periods. It assists in managing cash flows,
ensuring solvency, and understanding how liabilities evolve over time under different
interest rate assumptions.

Many modern life insurance products, such as universal life or variable annuities, have
complex benefit structures with embedded options (e.g., investment-linked benefits,
death benefits, or withdrawal options). The force of interest is useful in valuing these
products, particularly when the benefits or cash flows are contingent on interest rates or
other market factors.

Many regulatory frameworks and accounting standards require life insurers to use
sophisticated models for the valuation of liabilities. For instance, under Solvency Il (in
Europe) or IFRS 17 (international accounting standards), continuous discounting based
on the force of interest might be required to assess the present value of future insurance
liabilities.

Bernoulli numbers

The Bernoulli numbers B, are usually expressed as coefficients of power series.

Following Coen (1996); Apostol (2008); Howard (1995); Franjic, Pecaric (2005); Marco
et al. (2018),

y :iBmy—m; y=0 (2a)
e'-1 = " m!
0 ym
The coefficients in Z B, g are difficult to obtain, consequently, the reciprocal of
m=0 m!
the term yy 1 can be expanded using the Taylor’s series expansion as follows:
e —
e -1 1&Y
-=y L (2b)
y Yia K
ey _1 © yk
=2 3)
y  S(k+1)!
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— =1+ 4 4)

But

e’ -1 y
=1
( y ][ey—lj ©)

Observe that from (5)

S CeLT 6

Equations (2a) and (5) imply

y _ 2 3
ey ) 1YY BO+Ey+iy2+§y3_,, =1 (7)
y e’ -1 2 6 24 1 2! 3!

y _
ey =B, + B , B y+ B ,8B .8 y’+..=1 (8
y e’ -1 2100 11! 310 21 1121

Comparison of coefficients (setting of B, to 1 and coefficients of other powers of Y to
0) yielded

1 1 1 1 1 1
B, =1; Blz_EBoz_E; Bzz_gBo_B1zgi BJ_:_E; B4:—%J
1 1
42" 30
__°
10 — 66
! 1
B, =2(-1)" 2V (am)=2(-2y* B o2 ©)
2m (2 )Zm (2 )2m
T T
BZm+1 0! m>1
e B2
2 — 2m=| 2m 9
s(2m) Zl:r 2(2m)! (%a)
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Thus, based on the observations in Lehmer (1988); Tuenter (2001); Si (2019), Guo and
Liu (2020), the following condition in (9b) is valid
k

——n—=0; k>1 9b
0m'k+1 m) (90)

4 6 8 10

Yy ¥y, Y Yy Y oy (10)
e'~1 = 2 12 720 30240 1209600 47900160

Material and methods

Modelling the default risk interest rate intensity through the evolution of Bernoulli
series

In practice the accumulation function A(s) is usually not given and in particular, nominal

interest rate is constant: & (s):5 in life insurance underwriting because in the

deterministic market, interest rate is default free. Consequently, it is necessary to
construct a reasonable model for the force of interest ¢ based on Bernoulli Series
formula. Accordingly, the following is a theorem due to the authors of this paper.

Theorem

Q) if MeZ" for &> 0 then the following relationship holds

m_. m U [A
a {1—e‘m5} A,
0 11)

(ii) The interest rate intensity & depending on 1 is estimated as follows:

log, (1+1)

(12)
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Proof (i)

The linear interpolation assumption for mortality function is defined as follows:
. =(1-s)l, +sl,,, =1, —sd, (13)
d, =1 -1., (14)

Dividing (13) through by |, yields

bes (1-s) 552 = (1-5) 5, p,) (15)
:(spx):1_8+s(lpx):1_s(1_(1px)) (16)
:(s px)zl_s(qu) (17)

Now differentiating I, =1, —sd, with respectto s

X+S

d|x+s _
e ‘18’
-1 d|x+s ___1 . _ dx
SR o
-1

d, d 1, d (L) 1 1

Ix+s - Ix XIX+S - Ix X( Ix j _(qX)X(s px)_(qX)X{l_s(qu)} (20)
fT(X)(S)::uHs(s px) (21)

1
fT(x)(S) :(qx)x {1_3(1q )} {1_5(1_(1 px))} = qx (22)

Following Souza (2019), the continuous whole life insurance is defined as

A= £3_5§ fr (§)dE = ! e (o) 14 dE (23)

This equation can be approximated as follows

o0

_ a+l I
A= Z[ [e* %ﬂwdé) (24)

a=0 X
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Let &= +s,then d& =ds and s €{0,1}

Then
_ o (1 | w (1
Ax = [Ie (008) s ﬂxwde = Z( feI(,. px)uxwdS} (25)
a=0\ o Ix a=0\ o
_ w (1
f— Ax = Z[Ie 6 OHS ( px)(s px+a):ux+a+stJ (26)
a=0\ o
o ® 1
= A= (P [ (P s 27)
a=0 0
We already know that
qX = lLlX-%—S (S pX ) :> qX+D{ = ll'lX+S+a (S pX+0t) (28)
Note that
e—b‘(aJrs) _ e—&(a+l)e(>‘(1—s) — p9a=0gd=0s _ gda=0s (29)
_ o 1
A=Y (.p) e e, ds (30)
a=0 0

:/KF{Z(apX)(qM } [e’ds (31)

a=0
The discrete life insurance is given by

A =D (0 P )Gy, ) (32)

a=0

and

1 s-s) Tt s(-1) L 5(1-0) a8 5
J‘e‘s(l‘s)ds: e I _ (1=} [e"-1 (33)
0 -0 |, o o o o

Consequently,

- e’ -1
Ax—A(( 3 j (34)
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A o
&:e —13_&2 o
A 5 A e -1

(35)

1
By definition the discrete discount function v = I
+1

The immediate ordinary annuity is defined as

S ESUAR I P R
aﬁ_év _( i j_i[l (1+ij] (30)

The fully continuous ordinary annuity certain (bank type) is given as

m

- - T s e " e’ 1
am=_|'(1+|) ds=_(|)'ebds={ 5 l ={ 5 —g}

0 @37)
C1-e™ 1-v"
o o
Observe that by definition
log, (1+i)=6 =€’ =1+i=e’ -1=i (38)
By definition the discrete ordinary annuity is
(39)
:(1—vm):5x6_m (40)
hence
5><am:i><am (41)
m mxi m(e§ —1) m (95 —l)
—= == == (42)
ay (ag)x<i (am)xs (am)
Therefore
m m [e-1] m A
— ==X ==X— (43)
a_ am o am A
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m m [e’-1 m e’ -1 mé e’ -1
_ = ——X = — X = X
a am | O {1_e-mf’ } 5 (1-e™) | &

o (44)
-mo Z\x
= D EEEse—— X —_—
(e—mé _1) A(
Proof of (ii)
We use the result in part (i) of the theorem to estimate the interest rate intensity
B o B,s” (45)
[es —1] ~ mi
where
d™( s
B =] — oISl <27 46
) |:dm (es _1j:|s—0 | | ( )

1

{d( s ﬂ: (#-1)-s(¢") :1-1—5(85):% -

dle -1 -1 | (e

Now apply L’Hospital rule,

(es-1) By 2(e*-1) 2(e°-1)

again apply L’Hopital’s rule.

Bl:(es_l)—sz(eS) [ e :|:_Ses_es:| = -
ey el L

Expanding fully, for S # 0 yields

s S 3 1 (50)
s 1] 2 3 4 N 2 3
[e l] (1+s++s+s+...—lj (1+S+S+ j
21 31 41 21 31 41

30



The Advanced Econometrics of Continuous Risk-Free Interest Rate Modelling and Implementation for

Life Insurance Valuation

S s ¢ ¢ s 2 ¢ 2 (s 2 3
=l-| —+—+—+. || ==+ | | ===+ +.
[e° 1] 21 31 41 21 31 41

21731 4l
;$#0
(51)
s
& -1]
(52)
Lo lgite L, e 1 e 1
0! 2 12 720 30240 1209600 47900160

Let S=-Mo in (52)
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Again let S=0 in (52)

)
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- 1 x{ -mé }:
) e ™ 1
=
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2 12 720 30240 1209600 (56)
4= 10510+...
47900160
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Using the quadratic estimation, we can ignore all the terms from the fourth term and above
in the numerator and in the denominator to have

1+ ms+ L ms?
m__2 12 (57)
a1 lsilys

2 12
Subtracting 1 from both sides of (57), yields
m 1+ -ms + - —m’s?
—-1=—2 12 1 (58)
aq 1-=5+—-06°
2 12

o 1+;m5+112m252—(1—;5+11252j
= —-1= 1 1 (59)
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Since ¢ >0, it follows that

2
+
» 1mz_1(m—aﬂ_1 [maw]
127 12| a, ) 12| a
=0, =

est (68)
2{1mz 1["1%}1}
12 12 a 12
Furthermore, to justify why the term must possibly start at 1, we must have that
m-a
RIS ik I (69)
12 12 a 12
m
1, 1 1 1
—m-m—+la ——— >0 (70)
12 12am m 12am 12
1
m?>-m-—>0 (71)
a
ol
=>m m-— >0 (72)
a

The zeros of the corresponding quadratic equation are

1
m=0orm=—;
an

The solution to the quadratic inequality
1 : :
m <0 or M >— and this accounts for why m must possibly start at 1
&
By definition
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Sexact = IN(1+1) (73)

Therefore, the estimated discount function is expressible in the form

1fm-a) 1 1
S+ Em+ S
2 a, ] 2 2
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|
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7\
3
o))
ST | 4
3]
N——

vest = eXp (_)

(74)
This completes the proof

As the term m increases, the immediate annuity a_ also increases. The increase is

justified as follows:

a_ = VxL1+V x14+ Vi x14 . 4V x14+V" x1 (75)
= a :v(1+v1+v2 FoV"? +vm’l) (76)
1-v" 1 (1-Vv"
m 1-v 1+il d
Ao 1 (1-v" | 1-V" 78)
w0 i
1+i
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Define
A(t+lj—A(t)
i™ = lim mx m (79)
P TAR)
and let A:l.Then as A—>0and m— o
m
() _jim L[ ALEA)=AR) (80)
A—0 A A(t)
0 _jim L[ AltrA)=A) (81)
A—0 A(t) A

[A(t +AA)— A(t)] )

j(m A'(t) (t)

~ a0

Data analysis and presentation

(83)

The table below shows the computation of the estimated interest rate intensities in
comparison to the exact value

Table 1: Estimated force of interest and corresponding present value function

m a; Oest Vest |5exaxt - 5est|
1 0.9523809524 0.0487901646 0.9523809520 -0.0000000004
2 1.8594104308 0.0487900890 0.9523810240 0.0000000752
3 2.7232480294 0.0487898670 0.9523812354 0.0000002972
4 3.5459505042 0.0487894177 0.9523816633 0.0000007465
5 4.3294766706 0.0487886654 0.9523823798 0.0000014988
6 5.0756920673 0.0487875391 0.9523834524 0.0000026251
7 5.7863733974 0.0487859725 0.9523849444 0.0000041917
8 6.4632127594 0.0487839038 0.9523869147 0.0000062604
9 7.1078216756 0.0487812750 0.9523894183 0.0000088892
10 7.7217349292 0.0487780325 0.9523925065 0.0000121317
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11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

8.3064142183

8.8632516364

9.3935729871

9.8986409401

10.3796580382
10.8377695602
11.2740662478
11.6895869027
12.0853208597
12.4622103425
12.8211527072
13.1630025783
13.4885738841
13.7986417943
14.0939445660
14.3751853010
14.6430336200
14.8981272571
15.1410735782
15.3724510269
15.5928105018
15.8026766684
16.0025492080
16.1929040076
16.3741942929
16.5468517076
16.7112873405
16.8678927053
17.0170406717
17.1590863540
17.2943679562
17.4232075773
17.5459119784
17.6627733128
17.7740698217
17.8800664968
17.9810157113

0.0487741259
0.0487695088
0.0487641380
0.0487579735
0.0487509785
0.0487431190
0.0487343640
0.0487246851
0.0487140565
0.0487024547
0.0486898589
0.0486762503
0.0486616123
0.0486459304
0.0486291922
0.0486113870
0.0485925061
0.0485725423
0.0485514904
0.0485293463
0.0485061080
0.0484817744
0.0484563462
0.0484298250
0.0484022141
0.0483735176
0.0483437409
0.0483128905
0.0482809737
0.0482479990
0.0482139756
0.0481789137
0.0481428242
0.0481057188
0.0480676098
0.0480285103
0.0479884338
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0.9523962271
0.9524006244
0.9524057396
0.9524116107
0.9524182728
0.9524257584
0.9524340969
0.9524433154
0.9524534387
0.9524644889
0.9524764860
0.9524894480
0.9525033906
0.9525183278
0.9525342713
0.9525512315
0.9525692168
0.9525882338
0.9526082879
0.9526293827
0.9526515205
0.9526747022
0.9526989274
0.9527241944
0.9527505003
0.9527778413
0.9528062123
0.9528356073
0.9528660192
0.9528974402
0.9529298615
0.9529632736
0.9529976662
0.9530330282
0.9530693481
0.9531066134
0.9531448113

0.0000160383
0.0000206554
0.0000260262
0.0000321907
0.0000391857
0.0000470452
0.0000558002
0.0000654791
0.0000761077
0.0000877095
0.0001003053
0.0001139139
0.0001285519
0.0001442338
0.0001609720
0.0001787772
0.0001976581
0.0002176219
0.0002386738
0.0002608179
0.0002840562
0.0003083898
0.0003338180
0.0003603392
0.0003879501
0.0004166466
0.0004464233
0.0004772737
0.0005091905
0.0005421652
0.0005761886
0.0006112505
0.0006473400
0.0006844454
0.0007225544
0.0007616539
0.0008017304
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48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

18.0771578203
18.1687217336
18.2559254606
18.3389766291
18.4180729801
18.4934028382
18.5651455602
18.6334719621
18.6985447258
18.7605187865
18.8195417014
18.8757540013
18.9292895251
18.9802757382
19.0288340363
19.0750800346
19.1191238425
19.1610703262
19.2010193583
19.2390660555
19.2753010052
19.3098104812
19.3426766487
19.3739777607
19.4037883435
19.4321793748
19.4592184522
19.4849699545
19.5094951947
19.5328525664
19.5550976823
19.5762835069
19.5964604828
19.6156766503
19.6339777622
19.6514073925
19.6680070405

0.0479473945
0.0479054072
0.0478624870
0.0478186495
0.0477739107
0.0477282870
0.0476817951
0.0476344521
0.0475862750
0.0475372815
0.0474874893
0.0474369160
0.0473855798
0.0473334988
0.0472806910
0.0472271748
0.0471729684
0.0471180902
0.0470625584
0.0470063913
0.0469496072
0.0468922240
0.0468342601
0.0467757333
0.0467166614
0.0466570623
0.0465969535
0.0465363525
0.0464752766
0.0464137428
0.0463517681
0.0462893692
0.0462265626
0.0461633646
0.0460997913
0.0460358586
0.0459715820
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0.9531839285
0.9532239510
0.9532648644
0.9533066541
0.9533493048
0.9533928011
0.9534371271
0.9534822669
0.9535282039
0.9535749217
0.9536224036
0.9536706326
0.9537195917
0.9537692637
0.9538196314
0.9538706776
0.9539223848
0.9539747358
0.9540277132
0.9540812997
0.9541354780
0.9541902308
0.9542455411
0.9543013917
0.9543577657
0.9544146462
0.9544720167
0.9545298604
0.9545881610
0.9546469022
0.9547060680
0.9547656425
0.9548256099
0.9548859549
0.9549466621
0.9550077164
0.9550691029

0.0008427697
0.0008847570
0.0009276772
0.0009715147
0.0010162535
0.0010618772
0.0011083691
0.0011557121
0.0012038892
0.0012528827
0.0013026749
0.0013532482
0.0014045844
0.0014566654
0.0015094732
0.0015629894
0.0016171958
0.0016720740
0.0017276058
0.0017837729
0.0018405570
0.0018979402
0.0019559041
0.0020144309
0.0020735028
0.0021331019
0.0021932107
0.0022538117
0.0023148876
0.0023764214
0.0024383961
0.0025007950
0.0025636016
0.0026267996
0.0026903729
0.0027543056
0.0028185822
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85  19.6838162291 0.0459069771 0.9551308071 0.0028831871
86  19.6988725991  0.0458420588 0.9551928146 0.0029481054
87  19.7132119992 0.0457768422 0.9552551111 0.0030133220
88  19.7268685706  0.0457113418 0.9553176827 0.0030788224
89  19.7398748292 0.0456455720 0.9553805158 0.0031445922
90  19.7522617421 0.0455795471 0.9554435968 0.0032106171
91  19.7640588020  0.0455132808 0.9555069126 0.0032768834
92 19.7752940971 0.0454467867 0.9555704503 0.0033433775
93 19.7859943782 0.0453800783 0.9556341970 0.0034100859
94  19.7961851221 0.0453131685 0.9556981404 0.0034769957
95  19.8058905925 0.0452460703 0.9557622682 0.0035440939
96  19.8151338976 0.0451787962 0.9558265684 0.0036113680
97  19.8239370453 0.0451113584 0.9558910294 0.0036788058
98  19.8323209955 0.0450437690 0.9559556397 0.0037463952
99  19.8403057100 0.0449760398 0.9560203880 0.0038141244
100  19.8479102000 0.0449081822 0.9560852635 0.0038819820

Opaey = 0.0487901642 and v, = 0.9523809524 at i =0.05

Table below shows the computed results for the interest and discount rates compounded

many times

Table 2: Compounded interest and discount rates

m j(m dm

1 0.0500000004  0.0476190480
2 0.0493900761 0.0481997807
3 0.0491887684  0.0483952672
4 0.0490881821 0.0484930729
5 0.0490274749 0.0485514044
6 0.0489864298 0.0485897236
7 0.0489563733 0.0486163617
8 0.0489329484  0.0486354638
9 0.0489137149 0.0486493129
10  0.0488971909 0.0486592608
11  0.0488824184  0.0486661530
12 0.0488687459 0.0486705402
13 0.0488557117 0.0486727929
14 0.0488429771 0.0486731670
15  0.0488302863 0.0486718423
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16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

0.0488174411
0.0488042849
0.0487906917
0.0487765588
0.0487618011
0.0487463478
0.0487301395
0.0487131258
0.0486952643
0.0486765189
0.0486568590
0.0486362589
0.0486146969
0.0485921552
0.0485686191
0.0485440768
0.0485185193
0.0484919396
0.0484643333
0.0484356977
0.0484060321
0.0483753373
0.0483436158
0.0483108713
0.0482771090
0.0482423353
0.0482065577
0.0481697847
0.0481320257
0.0480932911
0.0480535922
0.0480129409
0.0479713499
0.0479288324
0.0478854024
0.0478410743
0.0477958630
0.0477497839

0.0486689477
0.0486645767
0.0486587975
0.0486516609
0.0486432046
0.0486334572
0.0486224405
0.0486101713
0.0485966632
0.0485819269
0.0485659718
0.0485488058
0.0485304365
0.0485108708
0.0484901159
0.0484681787
0.0484450667
0.0484207875
0.0483953495
0.0483687613
0.0483410322
0.0483121720
0.0482821912
0.0482511007
0.0482189123
0.0481856381
0.0481512909
0.0481158839
0.0480794311
0.0480419468
0.0480034457
0.0479639433
0.0479234551
0.0478819972
0.0478395861
0.0477962386
0.0477519718
0.0477068030
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54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

0.0477028528
0.0476550857
0.0476064991
0.0475571098
0.0475069348
0.0474559911
0.0474042964
0.0473518679
0.0472987235
0.0472448809
0.0471903578
0.0471351722
0.0470793418
0.0470228848
0.0469658187
0.0469081616
0.0468499311
0.0467911449
0.0467318206
0.0466719756
0.0466116274
0.0465507931
0.0464894897
0.0464277341
0.0463655432
0.0463029332
0.0462399207
0.0461765217
0.0461127522
0.0460486278
0.0459841640
0.0459193761
0.0458542790
0.0457888875
0.0457232162
0.0456572792
0.0455910907
0.0455246643

0.0476607499
0.0476138304
0.0475660624
0.0475174643
0.0474680544
0.0474178511
0.0473668731
0.0473151391
0.0472626676
0.0472094776
0.0471555876
0.0471010165
0.0470457830
0.0469899056
0.0469334031
0.0468762937
0.0468185961
0.0467603284
0.0467015088
0.0466421553
0.0465822858
0.0465219180
0.0464610693
0.0463997571
0.0463379985
0.0462758104
0.0462132095
0.0461502124
0.0460868352
0.0460230941
0.0459590047
0.0458945825
0.0458298430
0.0457648011
0.0456994715
0.0456338689
0.0455680074
0.0455019010
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92  0.0454580136 0.0454355635
93  0.0453911519 0.0453690083
94 0.0453240920  0.0453022486
95  0.0452568468 0.0452352972
96  0.0451894287 0.0451681670
97  0.0451218499 0.0451008701
98  0.0450541223 0.0450334188
99  0.0449862577 0.0449658249
100 0.0449182674  0.0448981000
25
£ 20
=]
c
C
< 15
B
210
[J]
=
£ 5
0
0 50 100 150
Annuity Period
Figure 1: The graph of immediate annuity and annuity period.
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Figure 2: The graph of force of interest and immediate annuity.
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Figure 3: The graph of discount function and immediate annuity

0.051

0.05
0.049
0.048
0.047
0.046
0.045
0.044

0 20

Ccompounded Rate

40

60 80 100

Period

compounded interest rate

Compounded Discount rate

120

Figure 4: The graph of discount function and immediate annuity

Discussion of Results

Following the definition of the power series, the Bernoulli equation (84) can be expressed
for the purpose of interest rate computations as follows.

§ &BO"

e -1 = ml

o
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(86)

(87)

(88)

(89)

The Cauchy product of two infinite series (z AKJ and (Z By, j is given by

K=0

Zoe{Za)Ze)

)
N=0

N
CN = AbBN +A1BN—1+"'+'A‘1\1B‘0 = ZAKBN—K
K=0

M=0

(90)

(91)

Therefore, based on the Cauchy product, the force of interest is given by

o N 5N+lfK B 5K
5: K
NZ_:;;)(NH—K)! K|
o N B5N+1
5: K
= NZ_(,;,K!x(NH—K)'
= 8 (N+1)B, "

N
o=
- N—OKZ_OK!X(N +1—K)!(N+1)!
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=22 e

1N

(96)

From the same Table 1, the value of the estimated force of interest steadily reduces at
different levels of increasing immediate annuity a_,. This is because, as the term

m-—oo, V" — 0. From our observation,|5est —5exact| <& where £>0 is a small

number. We specify the tolerance limit a priori £ =0.4% and the absolute value of the
difference falls within the tolerance limit. A defined acceptable range of precision was
set and in the last column of Table 1, the technique of modelling the interest rate intensity
employed has shown a clear extent of departure of the estimated from the exact result. If
the estimated rate is beyond the acceptable limits, the estimation is ignored. The analytical
justification of having smooth progression of interest rates certainly satisfies the practical
need to have smooth rates to ascertain that premium rates computed do not exhibit
irregularities.

However, the present value function V., progressively increases as a, increases. The
m

interest rate intensity offers an acceptable method to perceive the rate at which an
investment of 1 increases on a continuous basis. The traditional compounding under
specified period of time always results in discrete changes to the accumulated amount.
However, it is observed in the Table that the continuous compounding leads to a smooth
and uninterrupted growth. Equation (96) has two implications on both the interest rate
and discount rate compounded m The interest rate compounded m times expressed in
terms of the estimated force of interest becomes.
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Consequently,
_ TR
i
- . i) . 1
i ):Ioge lim{1+— | |=log,|lim||1+— (98)
m—w m m—w m

while the discount function becomes
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(99)

In Figure 4, the significant difference of nominal rate changes between i and d™ was
shown to converge at some point. Table 2, shows the trends of the estimated force of
interest and the discount function. The estimated values taper to the true value. In Figure
2, the force of interest declines as the immediate annuity increases while in Figure 3 the
force of discount increases as annuity increases. Taking the limits in equation (97) and
(99) results to.
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: : : o . :
This holds true because since ¢ is small, then — is smaller and we are permitted to
m

5
take the first order linear approximation €™ =1+ — is appropriate, hence the result on
m

cross-multiplication by m . This further explains why in Figure 4, the compounded rates

i and d™ converges to the same o from two opposite directions as the period
approaches infinity. Furthermore, the effective annual rate of interest(EA) can be

defined as

EA= (1+ ij -1 (102)
m

Consequently, the annual bonus interest in excess of interest rate obtained through
compounding is expressible in the form

BI =(1+ij ~1-] (103)
m

This expression describes the merits of high frequency of compounding because it
improves the effective annual interest rate.

- m
EA = lim [1+ij _1-e -1 (104)
m—o m

The maximum bonus interest is achieved under continuous compounding. Consequently,
high level of compounding frequency gives further annual bonus interest through the
peaked value at high compounding frequency. Suppose the principal « is contributed
every year 7 under continuous compounding at an annual interest rate i, then the
accumulation function can be defined as

A(r)= ae” + e 1 e 4 e L0 4t (105)
. _ ei‘r+l _1
=A(r)=) ae™ = M (106)
m=0 e -1

Since the amount invested at any time is the total principal a7 , the net appreciation n_
representing the increase in value above the total principal is given by

ir+l
n = M—GT (107)
e -1
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Implications of the force of interest for life insurers

The force of interest has several important implications for life insurers, particularly in
terms of pricing, reserving, investment strategy and regulatory compliance as follows:
The force of interest influences the pricing of life insurance policies by determining how
future cash flows (like premiums, benefits, and claims) are discounted to the present. This
has several implications: By using the force of interest, insurers can more precisely
determine the present value of future policyholder benefits, ensuring that premiums are
set at levels that reflect the true cost of providing insurance coverage over time. Since the
force of interest affects the discounting of future obligations, inaccurate modeling or
assumptions about the force of interest can lead to mispricing. This could result in
underpricing (leading to inadequate reserves) or overpricing (leading to loss of
competitiveness). For products with long durations (like whole life or universal life), the
force of interest helps insurers calculate the time value of future premiums, allowing for
more accurate premium setting and better matching of cash flows over the life of the

policy.

The force of interest plays a critical role in determining the reserves life insurers must
hold to meet future policyholder obligations. Implications here include: accurate reserve
setting relies on discounting future liabilities using an appropriate force of interest. If the
insurer's assumptions about the force of interest are too low, reserves may be
underestimated, which could lead to solvency issues in the future. Regulatory frameworks
like Solvency Il in Europe or IFRS 17 internationally often requires insurers to apply a
market-consistent discount rate when calculating reserves. The force of interest, typically
reflecting a risk-free or market-based rate, ensures that reserves align with the real cost
of capital, helping to avoid solvency risks. Modeling the force of interest allows insurers
to conduct stress testing under different interest rate scenarios. This helps assess the
robustness of their reserves in various market conditions, including interest rate shocks
or prolonged low-rate environments.

The force of interest influences how insurers approach their investment strategies and
asset-liability management (ALM): Insurers need to ensure that their asset portfolio
provides returns that align with the force of interest assumptions. If the force of interest
reflects a low-rate environment, insurers may need to adjust their investment strategies
(by holding more riskier assets or longer-duration bonds) to meet future obligations. Life
insurers must match the duration and risk profile of their liabilities with their asset
portfolios. The force of interest informs the discounting of liabilities, and thus helps
insurers determine how to structure their investments to meet these liabilities at the
appropriate time. Life insurers with long-duration liabilities (such as annuities or whole
life policies) are sensitive to changes in interest rates. Using the force of interest enables
insurers to model and hedge against the risks associated with fluctuating interest rates,
which could impact the present value of future liabilities and the performance of assets.
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The force of interest reflects continuous compounding of interest rates, and as such, has
important implications for how life insurers manage interest rate risk—changes in interest
rates (a rise or fall in risk-free rates) —that directly affect the discount rate used for future
liabilities. A higher force of interest reduces the present value of future liabilities,
potentially improving the insurer’s solvency position. Conversely, a lower force of
interest increases the present value of liabilities, which may require higher reserves. A
sudden change in interest rates can significantly impact the profitability of life insurance
products. For instance, if the insurer has not adequately priced for interest rate
fluctuations, the changes in the force of interest may affect the balance between the
premiums collected and the benefits paid out. Some life insurance products (e.g., variable
annuities, universal life policies) have embedded options like guaranteed minimum death
benefits or guaranteed interest rates. The force of interest helps insurers price and reserve
for these options by modeling how changes in interest rates affect the value of these
guarantees.

Regulatory frameworks often mandate that life insurers apply the force of interest in their
valuation methodologies. This ensures consistency, transparency, and risk management
in financial statements of insurers: Under regulatory standards like Solvency Il or IFRS
17, insurers are required to discount future liabilities using a rate that reflects market
conditions. The force of interest is typically used to meet these requirements, ensuring
that insurers comply with capital adequacy and solvency standards. Life insurers must
report their balance sheets, income statements, and cash flow projections in accordance
with generally accepted accounting principles (GAAP) or international financial
reporting standards (IFRS). The force of interest is used to discount future liabilities,
which impacts the insurer’s reported financial position, profitability, and risk profile. The
force of interest is also important for calculating the embedded value of a life insurer,
which is the present value of future profits from in-force policies. A market-consistent
force of interest helps ensure that the embedded value reflects current financial
conditions, which is important for investors and regulators. Life insurers offering
products with long-term guarantees, such as whole life, annuities, or universal life with
investment components, are particularly affected by the force of interest: The force of
interest affects the valuation of guarantees embedded in life insurance products, such as
minimum death benefits, cash value growth, or guaranteed annuity rates. These
guarantees are typically sensitive to interest rate assumptions, so the force of interest
needs to be carefully modeled to ensure the insurer is holding sufficient reserves. Changes
in the force of interest can influence policyholder behavior, such as lapses, surrenders, or
premium payments. For example, when interest rates are low, policyholders may be more
inclined to surrender policies early if they are dissatisfied with the low returns. Insurers
need to account for such behavior in their pricing and reserving models.
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Conclusion

Life insurers must manage their capital and risk exposure effectively in response to
changes in interest rates and the force of interest: The insurer’s capital requirements are
impacted by the force of interest, as changes in interest rates affect the present value of
liabilities. Insurers may need to adjust their capital buffers or risk management strategies
in response to shifts in interest rate assumptions or market conditions. Life insurers with
significant interest rate exposure may use derivatives or other financial instruments to
hedge against risks arising from changes in the force of interest. Effective hedging
strategies can protect the insurer's financial position from adverse movements in interest
rates. The force of interest has wide-ranging implications for life insurers, touching on
areas such as pricing, reserving, investment strategy, regulatory compliance, and risk
management. Accurate modeling of the force of interest is essential for ensuring that
insurers can meet their long-term obligations, manage their capital efficiently, and
maintain solvency under varying interest rate environments. By incorporating the force
of interest into their models, insurers can better align their assets and liabilities, optimize
profitability, and comply with regulatory standards.
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