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Abstract 

Most analytically driven interest rate derivations initiated in life contingencies are deemed 

fair to life insurers in meeting solvency requirements which arguably may not be satisfactorily 

fair to the insured. The arguments presented in this paper are written from the practical 

underwriting perspectives and are aimed at circumventing the comparatively intractable 

process of interest rate computations. The objectives are to obtain the hedge ratio each term 

of which is based on the uniform distribution of death assumption, use this ratio to derive 

power series in terms of Bernoulli numbers, estimate the risk-free interest rate intensities from 

the power series and compare the exact result with the estimated results. Given a tolerance 

limit of 0.4%, computational evidence shows that the absolute deviation of the exact from the 

estimated interest rate is less than 0.4%, it may be fairer to the insured in the performance of 

actuarial valuation involving present values computations. 

Keywords: Life Annuities, Force of Interest, Power Series, Bernoulli Numbers, 

underwriting, Valuations 

JEL Classification: C1, C4, C5 

Introduction  

Interest rate is widely applied to perform valuation in order to price life insurance 

products, especially in computing interest rate driven life annuities, life insurance to 

ensure solvency of life insurers through sufficient reserves. In life insurance valuation, 

interest rate is assumed constant, particularly in the default free deterministic market, 

where premium setting is characterized by the principle of equivalence. Past works which 

concentrated on Taylor’s series to estimate interest rate intensity could not successively 
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arrive at a closed form formula and could not investigate whether the results were 

reasonably accurate for the valuation of life insurance underwriting purposes.  

Actuaries and other insurance practitioners pick predetermined interest rate a priori to 

soothe life insurance valuation. This constitutes a problem in the quest for the 

development of functional forms of the deterministic interest rate function. In the field of 

computational insurance, efficient estimation technique is required to price complicated 

policies and calibrate actuarial models. These two areas rely on robust numerical 

techniques and rapidly efficient modelling and computations of interest rate. Interest rate 

scenario represents a very critical assumption of life insurance cash flow testing results. 

The deterministic market is default free in classical life contingency domain and 

consequently, the valuation of interest rate is constant. This study is timely for the 

Nigerian annuity market as the federal Government had recently enacted laws to regulate 

the Nigerian annuity market. The default free market interest rate scenarios are employed 

in life insurance since interest rates are fixed during actuarial valuation. Although the 

deterministic interest rate scenario may not moderately represent adverse conditions, 

extant actuarial literature contains no extensive formal exploration of this area. 

Literature review 

As a result of the recent instability in the insurance markets, the insurance companies try 

to optimize and accelerate underwriting operational processes to remain competitive. The 

attainment of this goal requires a deep knowledge of interest rate modelling. Following 

Udoye et al. (2021), a great deal of effort has been deployed to obtain new algorithms and 

new financial models or even modify the existing models so as to defuse their complexity 

while still maintaining the same level of computational accuracy. An emerging 

computationally intensive problem that life insurers encounter is the modelling of interest 

rate applicable in life insurance valuation. 

There is a gradual paradigm shift of insurance sector from the direct regulatory control 

system to a more liberalized environment, hence requiring new financial risk 

management. The regulatory authorities need to employ improved and advanced 

techniques for regulating product development through robust interest rate mechanism. 

Insurance institutions are the main investors and their credibility has marked implications 

on the financial stability; as such the main reference point of an insurer is its financial 

health or solvency. The obligation of an insurer is the operational underwriting processes 

and their expected expenses which are often computed using actuarial techniques for the 

protection of the policy holders and to guarantee of the stability of the insurance market.  

Present value problems driven by interest rate computations represent a crucial analytical 

tool in life insurance mathematics. Following observations in Panjer and Bellhouse 

(1980); Belhouse and Panjer (1981) and Jothi (2009) and Kellison (2009), the two major 

applications of this area concern issues relating to estimation and modelling. The latter 

has a longer pedigree as studied in this paper and becomes an extensive area of life 

contingencies (Anggraeni et al. 2023). Following observations in Kellison (2009), 
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McCutcheon and Scott (1986), the deepest form of this estimation problems remains a 

subject of classical life insurance methodologies. In practice, crucial transactions where 

interest rate estimation is applicable may possibly become analytically intractable in the 

quest for a closed form solution (Jothi, 2009). Furthermore, in the computation of the 

present value e 
of benefits, the value of  may be very high and may not be consistent 

with the insured’s benefits. Consequently, in this instance estimation methods for 
becomes an inevitable mathematical tool.  

From the observation raised, the application of the Euler-Maclaurin series appears to be 

an interesting estimation technique in interest rate modelling. To embed this in the process 

of insurance valuation, the nominal rate of interest approach can be perceived as an 

approximation of the force of interest by the truncation of the Euler Maclaurin series as 

appropriate. Interest rate estimations are important based on two major reasons. The first 

reason evolves from the gap between numerical estimations and analytical investigation. 

While numerical analysis sheds light on definite interest rate scenarios analytical 

techniques considers important properties and general behaviour.  

The latter includes asymptotic behaviour of solution as the interest rates become large or 

infinitesimally small. The second reason is the challenge of implementing the 

approximation schemes. Therefore, this paper contributes in both ways as the results 

evince better grasp of such estimation techniques. Consequently, the effect of the Euler 

Maclaurin series on the behaviour of nominal rate of interest in the short and long run is 

investigated. This method is important because of the possibility of generating a closed 

form solution that serves as a reference point in a more complex interest rate scenario. 

According to Anggraeni et al. (2023), actuarial valuation computation can be perceived 

as a consolidation of future cash flows projects anticipated cash flows on a yearly basis. 

The cash flows are analyzed on the basis that survival and mortality probabilities and 

economic assumptions of salary inflation and pension increases. The premium, 

investment incomes and benefit outgone in each year are then discounted using the 

valuation rate of interest effective the date of valuation to obtain the present values of 

premium income and benefit outgone. 

In Anggraeni et al. (2023), the rationale behind performing actuarial valuation of a 

scheme is to investigate how well the assets cover the liabilities. This procedure is 

important since a pension plan cannot continue indefinitely. If a scheme is discounted, its 

assets at that material time is crucial. Consequently, if the plan asset is not sufficient, 

members will not earn the expected benefits since the examination of present values may 

not necessarily elicit the long-run benefit of the cash flows being obtained. 

It is imperative to discount the future payments at the valuation rate of interest to obtain 

an appropriate present value for actuarial computations. In Jothi (2009) and Kellison 

(2009), a discounted cash flow process is applied for future benefit payments and 

premiums for future investment proceeds. The advantage of this technique is that assets 

are valued in a way that those are consistent with the actuarial liabilities. In actuarial life 
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problems, discounting is based on the theory of interest rate intensities; this gives vent 

to the need for its thorough examination. The objectives are (i) to obtain the hedge ratio 

/x xA A each term of which is based on the uniform distribution of death assumption (ii) 

to use this ratio to derive power series in terms of Bernoulli numbers (iii) to estimate the 

risk-free interest rate intensities from the power series and (iv) to compare the exact result 

with the estimated results. 

The Present value problem 

Let d  define the discount rate, then the present value PV of a sum C  due in s  years 

at the nominal rate of discount d  convertible n  times per year is defined as 

 1

ns
d

PV C
n

 
  

 
      (1a) 
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Letting nx d   
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The present value of an obligation of C due in s years’ time at d nominal rate of discount 

convertible continuously is obtained as
dsPV Ce  

Justifications for modelling the force of interest 

Modelling the force of interest is a key component in the valuation of life insurance 

products, as it is a crucial tool for calculating the time value of money over the policy’s 

lifetime. The force of interest is a continuous rate of interest that is used to model how 

the value of money changes over time in a life insurance contract. Below are several key 

reasons why it is important to model the force of interest in life insurance valuation:  

The force of interest allows actuaries to discount future cash flows such as premiums, 

claims, or benefits in a continuous manner. This is important because life insurance 

contracts involve long time horizons, with premiums and benefits occurring over many 

years or decades. A continuous discounting model ensures that the time value of money 

is reflected accurately. 

The force of interest is based on continuous compounding, which aligns with modern 

financial theory. Continuous compounding better approximates real-world interest rate 

movements and provides a more precise measure for pricing and valuing long-term 

financial contracts, such as life insurance. 

Life insurance policies involve long-term commitments. The force of interest quantifies 

how the value of money changes over time due to interest accumulation. By applying the 

force of interest, actuaries can assess the time value of future cash flows, accounting for 

inflation, opportunity cost, and investment returns. 

Using the force of interest allows for more flexibility in modeling interest rate 

environments and investment strategies. It provides a continuous and smooth 

representation of interest rate changes over time, as opposed to discrete models (such as 

annual compounding) that may introduce artificial discontinuities in the valuation 

process. 

The force of interest can be combined with stochastic interest rate models, which allow 

actuaries to assess the impact of interest rate fluctuations on the valuation of life insurance 

products. This is particularly useful when testing different economic scenarios, such as 

changes in interest rates, inflation, or market volatility. 

In life insurance, the force of interest is integral to both pricing and reserving. For pricing, 

it helps determining the appropriate premiums for policyholders given the time value of 

benefits and expenses. For reserving, it allows insurers to calculate the present value of 

future policyholder obligations, ensuring that they hold sufficient reserves to meet future 

claims. 
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The continuous nature of the force of interest better reflects the realities of financial 

markets where interest rates tend to change continuously rather than in discrete time 

periods. It provides a closer approximation of actual investment returns, which tend to be 

realized continuously in practice (e.g reinvestment of cash flows, dividends, etc.). 

Life insurance policies typically have long durations, and the force of interest helps 

insurers plan for future obligations over those periods. It assists in managing cash flows, 

ensuring solvency, and understanding how liabilities evolve over time under different 

interest rate assumptions. 

Many modern life insurance products, such as universal life or variable annuities, have 

complex benefit structures with embedded options (e.g., investment-linked benefits, 

death benefits, or withdrawal options). The force of interest is useful in valuing these 

products, particularly when the benefits or cash flows are contingent on interest rates or 

other market factors. 

Many regulatory frameworks and accounting standards require life insurers to use 

sophisticated models for the valuation of liabilities. For instance, under Solvency II (in 

Europe) or IFRS 17 (international accounting standards), continuous discounting based 

on the force of interest might be required to assess the present value of future insurance 

liabilities. 

Bernoulli numbers 

The Bernoulli numbers mB  are usually expressed as coefficients of power series. 

Following Coen (1996); Apostol (2008); Howard (1995); Franjic, Pecaric (2005); Marco 

et al. (2018), 

0
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Equations (2a) and (5) imply 
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Comparison of coefficients (setting of 0B  to 1  and coefficients of other powers of y to 

0 ) yielded 
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Thus, based on the observations in Lehmer (1988); Tuenter (2001); Si (2019), Guo and 

Liu (2020), the following condition in (9b) is valid 
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Material and methods 

Modelling the default risk interest rate intensity through the evolution of Bernoulli 

series  

In practice the accumulation function  A s is usually not given and in particular, nominal 

interest rate is constant:  s   in life insurance underwriting because in the 

deterministic market, interest rate is default free. Consequently, it is necessary to 

construct a reasonable model for the force of interest  based on Bernoulli Series 

formula. Accordingly, the following is a theorem due to the authors of this paper. 

Theorem 

(i) If m
Z  for 0  then the following relationship holds 

 

1

x

m
xm

m m A

a Ae 





 
  
   
 
              (11)  

(ii) The interest rate intensity depending on i is estimated as follows: 
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Proof (i) 

 The linear interpolation assumption for mortality function is defined as follows: 

  11x s x x x xl s l sl l sd            (13) 

1x x xd l l            (14) 

Dividing (13) through by xl yields 
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Following Souza (2019), the continuous whole life insurance is defined as 
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This equation can be approximated as follows 
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Let s   , then d ds   and  0,1s  
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     1 1s s s se e e e e e
                          (29) 
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s
x x xA p e e q ds

  

 



  





       (30) 

      
1
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s
x x xA p q e e ds

  

 



  





 
   

 
     (31) 

The discrete life insurance is given by 

    1

0

x x xA p q e
 

 



 





       (32) 

and  

 
     

1
1 1 1 1 1 0

1

0 0

1 1
s

s
s

s

e e e e e
e ds

    


    


  





        
                    

  (33) 

Consequently,  

1
x x

e
A A





 
  

 
       (34) 
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1
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x x
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AA e

A eA










  


      (35) 

By definition the discrete discount function 
1

1
v

i



 

The immediate ordinary annuity is defined as 

1

1 1 1
1

1

mmm
k

m
k

v
a v

i i i

    
            
      (36) 

The fully continuous ordinary annuity certain (bank type) is given as  

 
0 0 0

1
1

1 1

mm m s m
s s

m

m m

e e
a i ds e ds

e v

 




  

 

 
 



   
          

   

 
 

 
  (37) 

Observe that by definition  

 log 1 1 1e i e i e i             (38) 

By definition the discrete ordinary annuity is  

 1 m

m
v ia           

 (39) 

 1 m
mv a           (40) 

hence  

m
m

a i a            (41) 

 
 

   
 1 1

m mm m

m e em m i m

a a i a a

 



 
   

 
    (42) 

Therefore  

1 x

m m xm

m m e m A

a Aa a





 
    

 
     (43) 



Colombo Economic Journal (CEJ)                                                     Volume 2, Issue 2,  December 2024 
 

30 

 

 

 

1 1 1

1 1

1

m m
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m
x

m m e m e m e

a a e e

m A

Ae

  

 





  





 



       
          

       
 
 


 



 (44) 

Proof of (ii) 

We use the result in part (i) of the theorem to estimate the interest rate intensity 

0 !1

m

m

s
m

B ss

me






  

         (45) 

where  

0

; 2
1

m

m m s

s

d s
B s

d e




  
   

  
       (46) 

   

 

 

 
1 2 2

0
0

1 1 1 0

1 01 1

s s s

s
s s

s
s

e s e s ed s
B

d e e e


                   
 

 (47) 

Now apply L’Hospital rule, 

   

 

 
   

1 2

0 00

1 0

02 1 2 11

s s s s s s

s ss

s ss

e s e e se e se
B

e ee
 

                 
           

 (48) 

again apply L’Hopital’s rule. 

   

   
1 2

0
00

1 1

2 22 11

s s s s s

sss
s

ss

e s e se se e
B

eee 


                        

 (49) 

Expanding fully, for 0s  yields 

2 3 4 2 3

1

1
1 ... 1 1 ...

2! 3! 4! 2! 3! 4!

s

s s

e s s s s s s
s

 
                   

   

 (50) 



The Advanced Econometrics of Continuous Risk-Free Interest Rate Modelling and Implementation for 

Life Insurance Valuation 

 

31 

 

2 3
2 3 2 3 2 3

1 ... ... ... ...
2! 3! 4! 2! 3! 4! 2! 3! 4!1
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s

     
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             (51) 
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(52) 

Let s m   in (52) 
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       (53) 
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
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


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 

       (54) 

Again let s   in (52) 
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e
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Using the quadratic estimation, we can ignore all the terms from the fourth term and above 

in the numerator and in the denominator to have  

2 2
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2 12
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1
2 12
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m m
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a

 

 
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Subtracting 1  from both sides of (57), yields  
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
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Since 0  , it follows that 
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Furthermore, to justify why the term must possibly start at 1 , we must have that 

21 1 1
0
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m

m

m a
m

a
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2 1
0

m

m m
a

         (71) 

1
0

m

m m
a

 
   

 
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       (72) 

The zeros of the corresponding quadratic equation are 

0m   or 
1

m

m
a

 ; 

The solution to the quadratic inequality 

0m   or 
1

m

m
a

  and this accounts for why m must possibly start at 1  

By definition 
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Therefore, the estimated discount function is expressible in the form 
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This completes the proof 

As the term m increases, the immediate annuity 
m

a also increases. The increase is 

justified as follows: 
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lim
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i
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     (82) 

   

 
 m A t

i t
A t




         (83) 

Data analysis and presentation 

The table below shows the computation of the estimated interest rate intensities in 

comparison to the exact value 

Table 1: Estimated force of interest and corresponding present value function 

m       
m

a       est       estv  exaxt est   

1 0.9523809524 0.0487901646 0.9523809520 -0.0000000004 

2 1.8594104308 0.0487900890 0.9523810240 0.0000000752 

3 2.7232480294 0.0487898670 0.9523812354 0.0000002972 

4 3.5459505042 0.0487894177 0.9523816633 0.0000007465 

5 4.3294766706 0.0487886654 0.9523823798 0.0000014988 

6 5.0756920673 0.0487875391 0.9523834524 0.0000026251 

7 5.7863733974 0.0487859725 0.9523849444 0.0000041917 

8 6.4632127594 0.0487839038 0.9523869147 0.0000062604 

9 7.1078216756 0.0487812750 0.9523894183 0.0000088892 

10 7.7217349292 0.0487780325 0.9523925065 0.0000121317 
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11 8.3064142183 0.0487741259 0.9523962271 0.0000160383 

12 8.8632516364 0.0487695088 0.9524006244 0.0000206554 

13 9.3935729871 0.0487641380 0.9524057396 0.0000260262 

14 9.8986409401 0.0487579735 0.9524116107 0.0000321907 

15 10.3796580382 0.0487509785 0.9524182728 0.0000391857 

16 10.8377695602 0.0487431190 0.9524257584 0.0000470452 

17 11.2740662478 0.0487343640 0.9524340969 0.0000558002 

18 11.6895869027 0.0487246851 0.9524433154 0.0000654791 

19 12.0853208597 0.0487140565 0.9524534387 0.0000761077 

20 12.4622103425 0.0487024547 0.9524644889 0.0000877095 

21 12.8211527072 0.0486898589 0.9524764860 0.0001003053 

22 13.1630025783 0.0486762503 0.9524894480 0.0001139139 

23 13.4885738841 0.0486616123 0.9525033906 0.0001285519 

24 13.7986417943 0.0486459304 0.9525183278 0.0001442338 

25 14.0939445660 0.0486291922 0.9525342713 0.0001609720 

26 14.3751853010 0.0486113870 0.9525512315 0.0001787772 

27 14.6430336200 0.0485925061 0.9525692168 0.0001976581 

28 14.8981272571 0.0485725423 0.9525882338 0.0002176219 

29 15.1410735782 0.0485514904 0.9526082879 0.0002386738 

30 15.3724510269 0.0485293463 0.9526293827 0.0002608179 

31 15.5928105018 0.0485061080 0.9526515205 0.0002840562 

32 15.8026766684 0.0484817744 0.9526747022 0.0003083898 

33 16.0025492080 0.0484563462 0.9526989274 0.0003338180 

34 16.1929040076 0.0484298250 0.9527241944 0.0003603392 

35 16.3741942929 0.0484022141 0.9527505003 0.0003879501 

36 16.5468517076 0.0483735176 0.9527778413 0.0004166466 

37 16.7112873405 0.0483437409 0.9528062123 0.0004464233 

38 16.8678927053 0.0483128905 0.9528356073 0.0004772737 

39 17.0170406717 0.0482809737 0.9528660192 0.0005091905 

40 17.1590863540 0.0482479990 0.9528974402 0.0005421652 

41 17.2943679562 0.0482139756 0.9529298615 0.0005761886 

42 17.4232075773 0.0481789137 0.9529632736 0.0006112505 

43 17.5459119784 0.0481428242 0.9529976662 0.0006473400 

44 17.6627733128 0.0481057188 0.9530330282 0.0006844454 

45 17.7740698217 0.0480676098 0.9530693481 0.0007225544 

46 17.8800664968 0.0480285103 0.9531066134 0.0007616539 

47 17.9810157113 0.0479884338 0.9531448113 0.0008017304 
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48 18.0771578203 0.0479473945 0.9531839285 0.0008427697 

49 18.1687217336 0.0479054072 0.9532239510 0.0008847570 

50 18.2559254606 0.0478624870 0.9532648644 0.0009276772 

51 18.3389766291 0.0478186495 0.9533066541 0.0009715147 

52 18.4180729801 0.0477739107 0.9533493048 0.0010162535 

53 18.4934028382 0.0477282870 0.9533928011 0.0010618772 

54 18.5651455602 0.0476817951 0.9534371271 0.0011083691 

55 18.6334719621 0.0476344521 0.9534822669 0.0011557121 

56 18.6985447258 0.0475862750 0.9535282039 0.0012038892 

57 18.7605187865 0.0475372815 0.9535749217 0.0012528827 

58 18.8195417014 0.0474874893 0.9536224036 0.0013026749 

59 18.8757540013 0.0474369160 0.9536706326 0.0013532482 

60 18.9292895251 0.0473855798 0.9537195917 0.0014045844 

61 18.9802757382 0.0473334988 0.9537692637 0.0014566654 

62 19.0288340363 0.0472806910 0.9538196314 0.0015094732 

63 19.0750800346 0.0472271748 0.9538706776 0.0015629894 

64 19.1191238425 0.0471729684 0.9539223848 0.0016171958 

65 19.1610703262 0.0471180902 0.9539747358 0.0016720740 

66 19.2010193583 0.0470625584 0.9540277132 0.0017276058 

67 19.2390660555 0.0470063913 0.9540812997 0.0017837729 

68 19.2753010052 0.0469496072 0.9541354780 0.0018405570 

69 19.3098104812 0.0468922240 0.9541902308 0.0018979402 

70 19.3426766487 0.0468342601 0.9542455411 0.0019559041 

71 19.3739777607 0.0467757333 0.9543013917 0.0020144309 

72 19.4037883435 0.0467166614 0.9543577657 0.0020735028 

73 19.4321793748 0.0466570623 0.9544146462 0.0021331019 

74 19.4592184522 0.0465969535 0.9544720167 0.0021932107 

75 19.4849699545 0.0465363525 0.9545298604 0.0022538117 

76 19.5094951947 0.0464752766 0.9545881610 0.0023148876 

77 19.5328525664 0.0464137428 0.9546469022 0.0023764214 

78 19.5550976823 0.0463517681 0.9547060680 0.0024383961 

79 19.5762835069 0.0462893692 0.9547656425 0.0025007950 

80 19.5964604828 0.0462265626 0.9548256099 0.0025636016 

81 19.6156766503 0.0461633646 0.9548859549 0.0026267996 

82 19.6339777622 0.0460997913 0.9549466621 0.0026903729 

83 19.6514073925 0.0460358586 0.9550077164 0.0027543056 

84 19.6680070405 0.0459715820 0.9550691029 0.0028185822 
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85 19.6838162291 0.0459069771 0.9551308071 0.0028831871 

86 19.6988725991 0.0458420588 0.9551928146 0.0029481054 

87 19.7132119992 0.0457768422 0.9552551111 0.0030133220 

88 19.7268685706 0.0457113418 0.9553176827 0.0030788224 

89 19.7398748292 0.0456455720 0.9553805158 0.0031445922 

90 19.7522617421 0.0455795471 0.9554435968 0.0032106171 

91 19.7640588020 0.0455132808 0.9555069126 0.0032768834 

92 19.7752940971 0.0454467867 0.9555704503 0.0033433775 

93 19.7859943782 0.0453800783 0.9556341970 0.0034100859 

94 19.7961851221 0.0453131685 0.9556981404 0.0034769957 

95 19.8058905925 0.0452460703 0.9557622682 0.0035440939 

96 19.8151338976 0.0451787962 0.9558265684 0.0036113680 

97 19.8239370453 0.0451113584 0.9558910294 0.0036788058 

98 19.8323209955 0.0450437690 0.9559556397 0.0037463952 

99 19.8403057100 0.0449760398 0.9560203880 0.0038141244 

100 19.8479102000 0.0449081822 0.9560852635 0.0038819820 

0.0487901642exact   and 0.9523809524exactv   at 0.05i   

Table below shows the computed results for the interest and discount rates compounded 

many times 

Table 2: Compounded interest and discount rates 

m           
 m

i             
 m

d  

1 0.0500000004 0.0476190480 

2 0.0493900761 0.0481997807 

3 0.0491887684 0.0483952672 

4 0.0490881821 0.0484930729 

5 0.0490274749 0.0485514044 

6 0.0489864298 0.0485897236 

7 0.0489563733 0.0486163617 

8 0.0489329484 0.0486354638 

9 0.0489137149 0.0486493129 

10 0.0488971909 0.0486592608 

11 0.0488824184 0.0486661530 

12 0.0488687459 0.0486705402 

13 0.0488557117 0.0486727929 

14 0.0488429771 0.0486731670 

15 0.0488302863 0.0486718423 
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16 0.0488174411 0.0486689477 

17 0.0488042849 0.0486645767 

18 0.0487906917 0.0486587975 

19 0.0487765588 0.0486516609 

20 0.0487618011 0.0486432046 

21 0.0487463478 0.0486334572 

22 0.0487301395 0.0486224405 

23 0.0487131258 0.0486101713 

24 0.0486952643 0.0485966632 

25 0.0486765189 0.0485819269 

26 0.0486568590 0.0485659718 

27 0.0486362589 0.0485488058 

28 0.0486146969 0.0485304365 

29 0.0485921552 0.0485108708 

30 0.0485686191 0.0484901159 

31 0.0485440768 0.0484681787 

32 0.0485185193 0.0484450667 

33 0.0484919396 0.0484207875 

34 0.0484643333 0.0483953495 

35 0.0484356977 0.0483687613 

36 0.0484060321 0.0483410322 

37 0.0483753373 0.0483121720 

38 0.0483436158 0.0482821912 

39 0.0483108713 0.0482511007 

40 0.0482771090 0.0482189123 

41 0.0482423353 0.0481856381 

42 0.0482065577 0.0481512909 

43 0.0481697847 0.0481158839 

44 0.0481320257 0.0480794311 

45 0.0480932911 0.0480419468 

46 0.0480535922 0.0480034457 

47 0.0480129409 0.0479639433 

48 0.0479713499 0.0479234551 

49 0.0479288324 0.0478819972 

50 0.0478854024 0.0478395861 

51 0.0478410743 0.0477962386 

52 0.0477958630 0.0477519718 

53 0.0477497839 0.0477068030 
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54 0.0477028528 0.0476607499 

55 0.0476550857 0.0476138304 

56 0.0476064991 0.0475660624 

57 0.0475571098 0.0475174643 

58 0.0475069348 0.0474680544 

59 0.0474559911 0.0474178511 

60 0.0474042964 0.0473668731 

61 0.0473518679 0.0473151391 

62 0.0472987235 0.0472626676 

63 0.0472448809 0.0472094776 

64 0.0471903578 0.0471555876 

65 0.0471351722 0.0471010165 

66 0.0470793418 0.0470457830 

67 0.0470228848 0.0469899056 

68 0.0469658187 0.0469334031 

69 0.0469081616 0.0468762937 

70 0.0468499311 0.0468185961 

71 0.0467911449 0.0467603284 

72 0.0467318206 0.0467015088 

73 0.0466719756 0.0466421553 

74 0.0466116274 0.0465822858 

75 0.0465507931 0.0465219180 

76 0.0464894897 0.0464610693 

77 0.0464277341 0.0463997571 

78 0.0463655432 0.0463379985 

79 0.0463029332 0.0462758104 

80 0.0462399207 0.0462132095 

81 0.0461765217 0.0461502124 

82 0.0461127522 0.0460868352 

83 0.0460486278 0.0460230941 

84 0.0459841640 0.0459590047 

85 0.0459193761 0.0458945825 

86 0.0458542790 0.0458298430 

87 0.0457888875 0.0457648011 

88 0.0457232162 0.0456994715 

89 0.0456572792 0.0456338689 

90 0.0455910907 0.0455680074 

91 0.0455246643 0.0455019010 
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92 0.0454580136 0.0454355635 

93 0.0453911519 0.0453690083 

94 0.0453240920 0.0453022486 

95 0.0452568468 0.0452352972 

96 0.0451894287 0.0451681670 

97 0.0451218499 0.0451008701 

98 0.0450541223 0.0450334188 

99 0.0449862577 0.0449658249 

100 0.0449182674 0.0448981000 

 

 

Figure 1: The graph of immediate annuity and annuity period. 

 

 

Figure 2: The graph of force of interest and immediate annuity. 
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Figure 3: The graph of discount function and immediate annuity 

 

 

Figure 4: The graph of discount function and immediate annuity 

 

Discussion of Results 

Following the definition of the power series, the Bernoulli equation (84) can be expressed 

for the purpose of interest rate computations as follows. 
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Therefore if i  is the interest rate, then by definition, 
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The Cauchy product of two infinite series 
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Therefore, based on the Cauchy product, the force of interest is given by  
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                   (96) 

From the same Table 1 , the value of the estimated force of interest steadily reduces at 

different levels of increasing immediate annuity 
m

a . This is because, as the term 

m , 0mv  .  From our observation, est exact     where 0   is a small 

number. We specify the tolerance limit a priori 0.4%   and the absolute value of the 

difference falls within the tolerance limit. A defined acceptable range of precision was 

set and in the last column of Table 1 , the technique of modelling the interest rate intensity 

employed has shown a clear extent of departure of the estimated from the exact result. If 

the estimated rate is beyond the acceptable limits, the estimation is ignored. The analytical 

justification of having smooth progression of interest rates certainly satisfies the practical 

need to have smooth rates to ascertain that premium rates computed do not exhibit 

irregularities. 

However, the present value function estv  progressively increases as 
m

a  increases. The 

interest rate intensity offers an acceptable method to perceive the rate at which an 

investment of 1  increases on a continuous basis. The traditional compounding under 

specified period of time always results in discrete changes to the accumulated amount. 

However, it is observed in the Table that the continuous compounding leads to a smooth 

and uninterrupted growth. Equation (96) has two implications on both the interest rate 

and discount rate compounded m  The interest rate compounded m times  expressed in 

terms of the estimated force of interest becomes. 
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while the discount function becomes 
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 (99) 

In Figure 4, the significant difference of nominal rate changes between 
 m

i  and 
 m

d was 

shown to converge at some point. Table 2, shows the trends of the estimated force of 

interest and the discount function. The estimated values taper to the true value. In Figure 

2, the force of interest declines as the immediate annuity increases while in Figure 3  the 

force of discount increases as annuity increases. Taking the limits in equation (97) and 

(99) results to. 
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This holds true because since   is small, then 
m


 is smaller and we are permitted to 

take the first order linear approximation 1me
m
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   is appropriate, hence the result on 

cross-multiplication by m . This further explains why in Figure 4, the compounded rates 
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i  and 
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d  converges to the same   from two opposite directions as the period 

approaches infinity. Furthermore, the effective annual rate of interest  EA  can be 

defined as 

1 1

m
i

EA
m

 
   
 

       (102) 

Consequently, the annual bonus interest in excess of interest rate obtained through 

compounding is expressible in the form  
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This expression describes the merits of high frequency of compounding because it 

improves the effective annual interest rate.  

lim 1 1 1

m

i

m

i
EA e

m

 
     

 
      (104) 

The maximum bonus interest is achieved under continuous compounding.  Consequently, 

high level of compounding frequency gives further annual bonus interest through the 

peaked value at high compounding frequency. Suppose the principal  is contributed 

every year   under continuous compounding at an annual interest rate i , then the 

accumulation function can be defined as 
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Since the amount invested at any time is the total principal  , the net appreciation n
representing the increase in value above the total principal is given by 
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Implications of the force of interest for life insurers 

The force of interest has several important implications for life insurers, particularly in 

terms of pricing, reserving, investment strategy and regulatory compliance as follows: 

The force of interest influences the pricing of life insurance policies by determining how 

future cash flows (like premiums, benefits, and claims) are discounted to the present. This 

has several implications: By using the force of interest, insurers can more precisely 

determine the present value of future policyholder benefits, ensuring that premiums are 

set at levels that reflect the true cost of providing insurance coverage over time. Since the 

force of interest affects the discounting of future obligations, inaccurate modeling or 

assumptions about the force of interest can lead to mispricing. This could result in 

underpricing (leading to inadequate reserves) or overpricing (leading to loss of 

competitiveness). For products with long durations (like whole life or universal life), the 

force of interest helps insurers calculate the time value of future premiums, allowing for 

more accurate premium setting and better matching of cash flows over the life of the 

policy. 

The force of interest plays a critical role in determining the reserves life insurers must 

hold to meet future policyholder obligations. Implications here include: accurate reserve 

setting relies on discounting future liabilities using an appropriate force of interest. If the 

insurer's assumptions about the force of interest are too low, reserves may be 

underestimated, which could lead to solvency issues in the future. Regulatory frameworks 

like Solvency II in Europe or IFRS 17 internationally often requires insurers to apply a 

market-consistent discount rate when calculating reserves. The force of interest, typically 

reflecting a risk-free or market-based rate, ensures that reserves align with the real cost 

of capital, helping to avoid solvency risks. Modeling the force of interest allows insurers 

to conduct stress testing under different interest rate scenarios. This helps assess the 

robustness of their reserves in various market conditions, including interest rate shocks 

or prolonged low-rate environments. 

The force of interest influences how insurers approach their investment strategies and 

asset-liability management (ALM): Insurers need to ensure that their asset portfolio 

provides returns that align with the force of interest assumptions. If the force of interest 

reflects a low-rate environment, insurers may need to adjust their investment strategies 

(by holding more riskier assets or longer-duration bonds) to meet future obligations. Life 

insurers must match the duration and risk profile of their liabilities with their asset 

portfolios. The force of interest informs the discounting of liabilities, and thus helps 

insurers determine how to structure their investments to meet these liabilities at the 

appropriate time.  Life insurers with long-duration liabilities (such as annuities or whole 

life policies) are sensitive to changes in interest rates. Using the force of interest enables 

insurers to model and hedge against the risks associated with fluctuating interest rates, 

which could impact the present value of future liabilities and the performance of assets. 
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The force of interest reflects continuous compounding of interest rates, and as such, has 

important implications for how life insurers manage interest rate risk—changes in interest 

rates (a rise or fall in risk-free rates) —that directly affect the discount rate used for future 

liabilities. A higher force of interest reduces the present value of future liabilities, 

potentially improving the insurer’s solvency position. Conversely, a lower force of 

interest increases the present value of liabilities, which may require higher reserves. A 

sudden change in interest rates can significantly impact the profitability of life insurance 

products. For instance, if the insurer has not adequately priced for interest rate 

fluctuations, the changes in the force of interest may affect the balance between the 

premiums collected and the benefits paid out. Some life insurance products (e.g., variable 

annuities, universal life policies) have embedded options like guaranteed minimum death 

benefits or guaranteed interest rates. The force of interest helps insurers price and reserve 

for these options by modeling how changes in interest rates affect the value of these 

guarantees. 

Regulatory frameworks often mandate that life insurers apply the force of interest in their 

valuation methodologies. This ensures consistency, transparency, and risk management 

in financial statements of insurers: Under regulatory standards like Solvency II or IFRS 

17, insurers are required to discount future liabilities using a rate that reflects market 

conditions. The force of interest is typically used to meet these requirements, ensuring 

that insurers comply with capital adequacy and solvency standards. Life insurers must 

report their balance sheets, income statements, and cash flow projections in accordance 

with generally accepted accounting principles (GAAP) or international financial 

reporting standards (IFRS). The force of interest is used to discount future liabilities, 

which impacts the insurer’s reported financial position, profitability, and risk profile. The 

force of interest is also important for calculating the embedded value of a life insurer, 

which is the present value of future profits from in-force policies. A market-consistent 

force of interest helps ensure that the embedded value reflects current financial 

conditions, which is important for investors and regulators.  Life insurers offering 

products with long-term guarantees, such as whole life, annuities, or universal life with 

investment components, are particularly affected by the force of interest: The force of 

interest affects the valuation of guarantees embedded in life insurance products, such as 

minimum death benefits, cash value growth, or guaranteed annuity rates. These 

guarantees are typically sensitive to interest rate assumptions, so the force of interest 

needs to be carefully modeled to ensure the insurer is holding sufficient reserves. Changes 

in the force of interest can influence policyholder behavior, such as lapses, surrenders, or 

premium payments. For example, when interest rates are low, policyholders may be more 

inclined to surrender policies early if they are dissatisfied with the low returns. Insurers 

need to account for such behavior in their pricing and reserving models. 
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Conclusion 

Life insurers must manage their capital and risk exposure effectively in response to 

changes in interest rates and the force of interest: The insurer’s capital requirements are 

impacted by the force of interest, as changes in interest rates affect the present value of 

liabilities. Insurers may need to adjust their capital buffers or risk management strategies 

in response to shifts in interest rate assumptions or market conditions. Life insurers with 

significant interest rate exposure may use derivatives or other financial instruments to 

hedge against risks arising from changes in the force of interest. Effective hedging 

strategies can protect the insurer's financial position from adverse movements in interest 

rates. The force of interest has wide-ranging implications for life insurers, touching on 

areas such as pricing, reserving, investment strategy, regulatory compliance, and risk 

management. Accurate modeling of the force of interest is essential for ensuring that 

insurers can meet their long-term obligations, manage their capital efficiently, and 

maintain solvency under varying interest rate environments. By incorporating the force 

of interest into their models, insurers can better align their assets and liabilities, optimize 

profitability, and comply with regulatory standards. 
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