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Generative design of stable semiconductor materials using
deep learning and density functional theory
Edirisuriya M. Dilanga Siriwardane 1,2, Yong Zhao 1, Indika Perera3 and Jianjun Hu 1✉

Semiconductor device technology has greatly developed in complexity since discovering the bipolar transistor. In this work, we
developed a computational pipeline to discover stable semiconductors by combining generative adversarial networks (GAN),
classifiers, and high-throughput first-principles calculations. We used CubicGAN, a GAN-based algorithm for generating cubic
materials and developed a classifier to screen the semiconductors and studied their stability using first principles. We found
12 stable AA0MH6 semiconductors in the F-43m space group including BaNaRhH6, BaSrZnH6, BaCsAlH6, SrTlIrH6, KNaNiH6, NaYRuH6,
CsKSiH6, CaScMnH6, YZnMnH6, NaZrMnH6, AgZrMnH6, and ScZnMnH6. Previous research reported that five AA0IrH6 semiconductors
with the same space group were synthesized. Our research shows that AA0MnH6 and NaYRuH6 semiconductors have considerably
different properties compared to the rest of the AA0MH6 semiconductors. Based on the accurate hybrid functional calculations, AA
0MH6 semiconductors are found to be wide-bandgap semiconductors. Moreover, BaSrZnH6 and KNaNiH6 are direct-bandgap
semiconductors, whereas others exhibit indirect bandgaps.
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INTRODUCTION
Semiconductors are essential components of modern devices that
use transistors, light-emitting diodes1, integrated circuits2, photo-
voltaic3, solar cells4, and so on5–7. Semiconductors exhibit variable
resistance since electron flow can be controlled by light and heat.
Therefore, these materials can be used for energy conversion, and
digital switching8. The elemental semiconductors found from
Group XIV in the periodic table, like Si and Ge, and the compounds
of Ge are widely used in electronics, photovoltaic and optoelec-
tronic devices. However, semiconductors with various properties
are required for industrial applications8,9. For instance, good
thermal conductivity and electric field breakdown strength, and
also wide bandgap of SiC semiconductor make it a suitable
material for high-temperature, high-power, high-frequency, and
high-radiation conditions10. Thus, computational approaches for
exploring semiconductors are essential to enhance future
technologies. High-throughput screening with the aid of first-
principles calculations was performed by several groups to
discover optoelectronic semiconductors. Setyawan et al. and Ortiz
et al. reported the high-throughput screening and data-mining
frameworks to investigate bandgap materials for radiation
detection11–13. High throughput material screening by Zhao
et al. found that Cu-In-based Halide Perovskite as potential
photovoltaic solar absorbers13,14. Based on 4507 hypothetical
materials, Li et al. suggest 23 candidates for light-emitting
applications, and 13 potential compounds for solar cell technol-
ogies13,15. Such examples indicate that high-throughput screening
can now be used to explore promising semiconductor materials.
Generative adversarial networks (GANs) are a kind of generative

models that learn patterns/distribution from input data16. GANs
use two sub-models to train a generative model. The generator
model generates fake data, and the discriminator model learns to
tell fake data from real data. The two sub-models are trained
simultaneously to achieve a Nash Equilibrium: the generator can
generate data that the discriminator can recognize half the

chance. Wasserstein distance17 and gradient penalty18 are
introduced during training in order to overcome mode collapse
and improve the training stability in original GANs16. There are a
limited number of works that leverage GANs to generate crystal
structures in material science. The reasons behind that are: 1)
Crystal structures have so many formations, such as a different
number of elements and number of atoms in a unit cell. It is hard
to come up with a unified representation to make GANs learn
from them like images or text; 2) GANs used in computer vision
cannot generate crystal structures that satisfy physics or
symmetric constraints. For instance, GANs easily generate
materials that are not recognizable or that have crowd atoms in
a unit cell. CrystalGAN19 is believed to be the first work that uses
GANs to generate materials. It applies CyClyGAN20 to simple
systems mapping ternary a hydride into another. In21, Kim et al.
use WGAN-GP18 to train a generative model to generate Mg-Mn-O
systems with atom coordinates as the input. All the works above
only consider a simple or specific family of materials at a limited
scale. CubicGAN proposed by Zhao et al.22, however, is the first
work that generates materials at a large scale.
In this research, we developed a binary classifier to filter the

semiconductors/Insulators (nonmetals) from the dynamically
stable quaternary Cubic materials discovered using the CubicGAN
model, where high-throughput calculations were done with the
assistance of a GAN model and density functional theory (DFT). We
studied the most important elemental and electronic properties,
which are helpful to distinguish the nonmetals and metals using
the machine learning models. In addition, we carried out DFT
calculations for those semiconductors to corroborate the thermo-
dynamic stability and semiconductor properties. As a result, we
find that 12 cubic semiconductors of a particular class of materials,
which we label as AA0MH6, are thermodynamically stable against
their competing phases. We further performed the DFT calcula-
tions to study their structural, mechanical, thermodynamic, and
electronic properties. Our results show that AA0MnH6 and
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NaYRuH6 have higher Cii (i = 1, 2, 3) elastic constants, bulk
modulus, shear modulus, and Young’s modulus compared to the
respective mechanical properties of the rest of the AA0MH6

materials. At temperatures less than 200 K, AA0MnH6 and NaYRuH6

have lower specific thermal capacity (Cv) relative to other AA0MH6

materials. The highest Cv at 300 K found in this work is from
BaSrZnH6 (127.96 JK−1mol−1). Moreover, hybrid functional calcu-
lations show that all AA0MH6 materials are wide-bandgap
semiconductors, which will be useful to develop optical and
high-temperature power devices23,24.

RESULTS AND DISCUSSION
Dataset of nonmetals and metals
As the CubicGAN model generates only ternary and quaternary
materials, we first analyzed the number of nonmetals (semicon-
ductors and insulators), and metals in the material project (MP)
database25, as shown in Table 1. We collected all the ternary and
quaternary materials, where the bandgap details are available,
using the Pymatgen code26. It could be found that ≈44 % of the
ternary materials are nonzero bandgap materials while ≈ 56 % are
metals. However, ≈73 % of the quaternary materials are
semiconductors or insulators, whereas only ≈27 % of them are
metals. This indicates that the probability of finding a stable
quaternary material with a nonzero bandgap is higher compared
to finding that in a ternary material set. We also compared the
same details of the cubic materials. Interestingly, ≈80 % of the
cubic ternary materials are metals, and only ≈20 % of them are
nonmetals. On the contrary, the quaternary cubic materials have
30 % more nonzero bandgap materials than the number of
metals. It shows that there is a low probability of discovering a
nonzero bandgap cubic ternary compound. Instead, in this
project, we mainly focused on the quaternary cubic materials for
finding stable semiconductors. In this way, by reducing the search
space of the materials, we can shorten the computational time
taken by the DFT calculations.

Feature importance
Understanding which features are significant during the classifica-
tion will be vital for discovering semiconductors. In Section 2.1, we
could show that quaternary materials have a higher percentage of
semiconductors compared to the ternary materials. Next, we
analyzed which features have higher importance than others for
classifying a quaternary material as metal or nonmetal. Feature
importance (FI) of random forest algorithm is defined as the mean
of the impurity decrease within each tree. This built-in feature of
the random forest makes it convenient and a widely used method
to calculate FI. Here, we trained our RFC model for the whole
quaternary materials data set. The classification report of this
model is in Supplementary Information. Even though both Avg.
and the maximum difference of each atomic/electronic property
were considered for the RFC model, only three features related to
maximum difference have FI greater than 1 %. This indicates that
Avg. value of the properties plays a significant role when
classifying a material as metal or nonmetal. The top features of
FI⪆ 2.0% are mentioned in Fig. 1. Avg. Availability of metallic
elements has the highest FI, while Avg. availability of nonmetal
also has a FI of around 2 %. This indicates that having a metallic or

nonmetallic element is important for the material to be a metal or
a semiconductor/insulator. It is generally accepted that metallic
elements have a higher boiling point and higher density
compared to that of nonmetals. It should be noted that the
elemental properties like metallicity, being semiconductor/insu-
lator, density, and boiling point are properties of the bulk material
formed with a given element. Since the availability of metallic and
nonmetallic elements plays a significant role, the boiling point and
density of those elements also can become important features
when classifying metals and nonmetals. It is also clear that
electronic properties like Avg. number of unfilled orbitals, Avg.
number of p-valence electrons, and Avg. availability of +2 and +3
oxidation states have high FI.
We also studied the descriptors to understand how the number

of metals and nonmetals depends on the percentage availability
of the metal (PM), nonmetal (PNM) and transition-metal (PTM)
elements in the chemical formulas. We use M, NM, and TM to
indicate the type of elements to avoid confusion between material
class (metal or nonmetal) and element type (metal, nonmetal,
transition metal). Figure 2 shows the violin plots with all the 39024
quaternary materials against those three atomic properties. Here,
PM= 100%, PNM= 100%, and PTM= 100% for a given chemical
formula when all the elements are M, NM, and TM, respectively.
Figure 2(a) clearly evidences that nonmetals dominate until
PM ≈ 60 %. The ratio between amounts of metals and nonmetals
(metals : nonmetals) is around 1: 3 at PM < 60 %. This becomes
approximately 5: 1 after 60 %, showing the probability of finding a
semiconductor/insulator decreases. On the contrary, Fig. 2(b)
shows the opposite behavior of metals and nonmetals, while PNM
alters. Moreover, it is clear that semiconductors and insulators
prefer a lower number of TM elements relative to the other
element types. At PTM > 30 %, number of metals become
significant compared to that of nonmetals. When PTM ≤ 5 %,
metals : nonmetals ratio is 1: 6.

Table 1. The total number (N) and percentage of ternary and quaternary nonmetals (NM) and metals (M) for all the types of Bravais lattice and also
for Cubic structures (Cubic-NM and Cubic-M) in the Material project database25.

Material NNM NM NM% M% NCubic−NM NCubic−M Cubic-NM% Cubic-M%

Ternary 28102 35682 44.06 55.94 2094 8385 19.98 80.02

Quaternary 28527 10497 73.10 26.90 2578 1438 64.19 35.81

Fig. 1 Feature importance as a percentage ( ⪆ 2.0%) from the RFC
model. Labels on the x-axis: metal atom (M), +2 oxidation state (+2),
boiling point (Tboil), atomic density (ρ), number of p-valence
electrons (Npval), +3 oxidation state (+3), nonmetal atom (NM),
number of unfilled valence orbitals (Nunfilled). Avg. and Avail. stands
for weighted average and availability, respectively.
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Predicting Semiconductors
We further analyzed the error of the DNN and RFC models trained
with quaternary cubic materials data. The 10-fold cross-validation
accuracy results for each training step of the DNN model are 0.86,
0.92, 0.91, 0.97, 0.94, 0.94, 0.88, 0.94, 0.94, 0.86. Those of the RFC
model are 0.86, 0.89, 0.88, 0.9, 0.87, 0.88, 0.90, 0.90, and 0.88. Thus,
the mean accuracy was obtained for the DNN (RFC) model as
0.92 ± 0.034 (0.88 ± 0.013). Figure 3 shows the normalized confu-
sion matrices for the classifiers. It is apparent that 33 (32) % of the
instances were classified as true metals while 65 (60) % of the
materials were listed as true nonmetals by the DNN (RFC) classifier.
The percentages of false metals and false nonmetals from the
DNN (RFC) model were 9.8 (4.9) % and 1.2 (2.5) %, respectively.
The classification report for the model is shown in Table 2. It is
clear that the DNN (RFC) classifier predicts whether a quaternary
material is a metal or nonmetal with 0.88 (0.91) accuracy. Precision
is the matrix that compares the number of true positive instances
with the number of predicted positive instances. In our work, the
DNN (RFC) model classifies a material as a nonmetal with 0.76
(0.96) and metal with 0.76 (0.84) precision. The recall is a measure
of the number of correctly predicted positive cases compared to
the total number of positive cases in the dataset. Table 2 shows

that there is 0.85 (0.91) recall for nonmetal, while there is 0.93
(0.93) recall for metals from the DNN (RFC) model. By combining
precision and recall, F1-score can be calculated as 0.90 (0.93) for
nonmetal and 0.84 (0.88) for metal classes. Therefore, the
predictions of semiconductors/insulators from our DNN and RFC
models can be expected to be highly accurate.
As seen in Table 2, the RFC model exhibits a slight improvement

over the DNN model. To show the methodology of finding stable
semiconductors based on generative adversarial networks, we
applied our RFC classifier on CubicGAN predicted mechanically
and dynamically stable quaternary materials. Out of 323
quaternary materials predicted by the CubicGAN model, 137
compounds were classified as nonmetals.

Structure and thermodynamic stability
We carried out our DFT calculations on those nonmetals to find
thermodynamically stable semiconductors. We discovered that
12 semiconductors, which have chemical formulas in the form of
AA0MH6, exhibit zero energy-above-hull against the respective
competing phases. Those are BaNaRhH6, BaSrZnH6, BaCsAlH6,
SrTlIrH6, KNaNiH6, NaYRuH6, CsKSiH6, CaScMnH6, YZnMnH6,
NaZrMnH6, AgZrMnH6, and ScZnMnH6. We also find that

class
Nonmetal

Metal

class
Nonmetal

Metal

class
Nonmetal

Metal

Fig. 2 Number of materials in each material class (metal or nonmetal) as a function of percentage availability (P) of element type in the
chemical formula. Here, we considered (a) metal:M, b nonmetal:NM, and c transition-metal:TM elements.
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Fig. 3 Normalized confusion matrices of the classifiers for metals (M) and nonmetals (NM). The confusion matrix for deep neural network
(DNN) is in purple, while that of random forest (RFC) is in blue.

Table 2. The classification report of the test set for the nonmetal/metal classifiers.

DNN RFC

Precision Recall F1_score Precision Recall F1_score Support

Metal 0.76 0.93 0.84 0.84 0.93 0.88 28

Nonmetal 0.96 0.85 0.90 0.96 0.91 0.93 53

Accuracy 0.88 0.91 81

Macro avg 0.86 0.89 0.87 0.90 0.92 0.91 81

Weighted Avg 0.89 0.88 0.88 0.92 0.91 0.91 81
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Kadir et al. reported 5 different AA0MH6 type semiconductors,
where M = Ir27. They were able to synthesize NaCaIrH6, NaSrIrH6,
NaBaIrH6, KSrIrH6, and KBaIrH6 by direct combination of the alkali
(Na and K), alkaline earth (Ca, Ba, and Sr) binary hydrides/
deuterides with Ir powder. Their X-ray and neutron powder
diffraction studies confirm that those semiconductors have the
space group symmetry F-43m. Furthermore, the open quantum
materials database (OQMD)28,29 contains the structural properties
and band gaps of NaCaIrH6, NaSrIrH6, NaBaIrH6 semiconductors
and the MP database has those information on NaCaIrH6, and
NaBaIrH6 semiconductors25 (See Supplementary Information).
CubicGAN generates conventional structures with cubic Bravais

lattice with F-43m (216) space group for AA0MH6 materials, which
have 36 atoms. On the contrary, the primitive unit cell with
hexagonal Bravais lattice has only 9 atoms. Therefore, we
considered the hexagonal unit cell to lower the computational
time of the DFT calculations. In the primitive unit cells (see Fig. 4),
green and red sites are symmetrically equivalent, while grey sites
are located in the right middle of the hexagonal unit cell. Thus, we
label the green and red sites as A and A0, while the middle site is
M. Rest of the 6 sites are occupied by H atoms. In the research
work of Kadir et al., they considered alkali atoms as A atoms,
alkaline earth atoms as A0 atoms, and M atoms as Ir. In this
research, our findings show that both A and A0 atoms can be alkali
atoms (E.g., CsKSiH6) or alkaline earth atoms (E.g., BaSrZnH6).
Moreover, the M atom can be a transition metal atom or even Al
or Si. Therefore, our experiments show that those materials can
have high chemical diversity.
The lattice parameters, A-H, M-H, A-M, and A-A0 bond lengths,

are mentioned in Table 3. The primitive hexagonal unit cells have
a/c= 1 lattice parameter ratio making a= b= c. As shown in
Table 3, Mn-related AA0MH6 and NaYRuH6 structures have the
shortest lattice parameters compared to the rest of the materials.
They have lattice parameters less than 5.0 Å, while other materials
have greater than 5.4 Å. All A, A0 and M elements make bonds
with H atoms. A and A0 elements are bonded to twelve equivalent
H atoms to form AH12 and A0H12 cuboctahedra. And also, M atoms
make MH6 octahedra by making bonds with 6 H atoms. An AH12

(A0H12) cuboctahedra shares corners with twelve equivalent AH12

(A0H12) cuboctahedra. Moreover, they share faces with four MH6

octahedra30. Due to symmetry, A-H and A0-H bond lengths are
equal. M-H bond lengths are the shortest compared to other
bonds for a given compound. A-A0 of Mn-related AA0MH6 and
NaYRuH6 structures are less than 3.4 Å, and A-M and A0-M
distances are less than 3.1 Å. It can cause strong interactions
between those atoms. A-A0 distance for the rest of the materials is
greater than 3.8 Å, and A-M and A0-M distances are greater than
3.3 Å, indicating relatively weaker interactions.

The thermodynamic stability of the AA0MH6 materials against
their elements was studied using the formation energies, which
were based on the following equation.

Eform ¼ 1
N

Etot �
X
i

xiEi

 !
(1)

Here, Etot is the total energy per unit formula of the material. xi is
the number of atoms of each element in the unit formula; i.e., 1 for
A, A0, M atoms and 6 for H. N= ∑xi; i.e., 9 for AA0MH6. To find the
atomic energies (Ei), we collected the most stable structures of
each element using the Pymatgen code26. Same DFT settings were
used to calculate the energy of each element. It is clear that all the
six materials have negative formation energies, which confirms
their stability. We also carried out spin-polarized calculations for
the AA0MH6 semiconductors with transition metal atoms to reveal
whether they form magnetism. We observed that those materials
do not have magnetic groundstates. Thus, all the AA0MH6

semiconductors are nonmagnetic materials.

Mechanical properties and stability
Next, we studied the mechanical properties and stability of the
AA0MH6 materials by calculating the elastic constants using the
DFPT method. To analyse the mechanical properties, we used the
Vaspkit code31, which computes the elastic constants by
considering the AA0MH6 cubic system. Since cubic unitcells has
a= b= c lattice lengths and α= β= γ= 900 lattice angles, C11=
C22= C33, C44= C55= C66, and C12= C13= C2332. Therefore, we
mention only the three independent elastic constants (C11, C12
and C44) in Table 4. It is clear that AA0MH6 materials have relatively
higher C11 for AA0MnH6 and NaYRuH6, compared to the other four
materials in Table 4. As discussed before, the lattice constants and
A-A0 bond lengths of AA0MnH6 and NaYRuH6 structures are
considerably lower than that of the rest of the materials. As
illustrated by Fig. 4, A-A0 bonds are aligned in a, b and c directions.
C11, C22, and C33 are parallel to the a, b and c directions,
respectively. Therefore, higher Cii (i = 1, 2 and 3) can be mainly
due to the strong interactions between the A and A0 atoms. Born
stability criteria for the cubic systems are C11− C12 > 0,
C11+ 2C12 > 0 and C44 > 032. It is clear from Table 4 that all the
eight materials comply with the above requirements.
We also calculated the Bulk modulus (K), Young’s modulus (Y),

and isotropic Poisson’s ratio (μ) based on the Hill approximation33

as mentioned in Table 4. The smallest K values were found from
CsKSiH6 (16.615 GPa), while the largest value was calculated from
AgZrMnH6 (120.755 GPa). SrTlIrH6 (21.915 GPa) provides the lowest
Y, while NaZrMnH6 (156.876 GPa) exhibits the maximum Y. It is clear

A

A'

M
H

Primitive Conventional
Fig. 4 Side view of the structure of AA0MH6 materials with primitive and conventional unitcells, which are indicated by red lines. The
green, purple, grey and blue spheres indicate the A, A’, M and H atoms, respectively.
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that NaYRuH6 and all the Mn-based materials have significantly
larger K and Y values than that of the other six materials. This can
be mainly because of high Cii (i = 1, 2, and 3) formed due to
strong A-A0 bonds. Because of low Y, NaYRuH6 and Mn-based

AA0MH6 materials can be considered stiffer materials relative to the
other six semiconductors. And also, they exhibit more resistance to
compression due to high K. All the μ values of the AA0MH6 materials
are between 0.2 and 0.4. maximum μ was found from SrTlIrH6.
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Fig. 5 Phonon dispersion of AA0MH6 materials. The positive phonon frequencies in the figure indicate that the materials are dynamically
stable.
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Thus, SrTlIrH6 has considerably low Y and high μ. This indicates that
SrTlIrH6 semiconductor is less stiff due to small Y and more
deformable elastically at small strains due to large μ.

Thermodynamic properties and dynamical stability
The temperature of the highest normal mode of a crystal is known
as the Debye temperature θD. This can be obtained by employing
Debye sound velocity (νD) as explained by Eq. (2). Debye sound
velocity can be calculated using the longitudinal and transverse
sound velocities, which can be determined based on K and G as
shown in Eq. (4)34. Here, N, V0, and ρ are the number of atoms,
volume, and density of the unicell, respectively. And also, h is
Plank’s constant, and kB is Boltzmann’s constant.

θD ¼ h
kB

3N
4πV0

� �1
3

νD (2)

νD ¼ 1
3

2
ν3l

þ 1
ν3t

� �� ��1
3

(3)

νl ¼ 3K þ 4G
3ρ

� �1
2

and νt ¼ G
ρ

� �1
2

(4)

Table 5 shows the respective ρ, νl, νt, νD and θD values for
AA0MH6 crystals. Debye temperature of NaYRuH6 and Mn-based
AA0MH6 materials are significantly higher than that of other
AA0MH6 materials. As θD depends on K and G (see Eq. (4) and (2)),
enhanced θD is due to the high K and G of those semiconductors.
We also plotted Cv as a function of temperature T using the

Phonopy code35. Cv can be determined based on the following
expression,

Cv ¼
X
qj

kB
_ωqj

kBT

� �2 expð_ωqj=kBTÞ
½expð_ωqj=kBTÞ � 1�2 ; (5)

where ωqj is the phonon frequency for q wave vector at jth
phonon band index and ℏ is the reduced Plank’s constant35. The
phonon frequency for each K-point is plotted in Fig. 5. As can be
seen in Fig. 6, the Cv of NaYRuH6 and Mn-based AA0MH6 materials
are plotted with broken lines, and that of the rest of the materials
is indicated by solid lines. It is clear that the Cv of NaYRuH6 and
Mn-based AA0MH6 materials are smaller than that of the other
materials at the low temperatures (0 to 150 K). At the low-
temperature limit (T ≥ θD, θD/T < < 1), Cv is proportional to (T/θD)3.
Since θD is higher compared to that of other materials, Cv is
smaller at low temperatures for NaYRuH6 and Mn-based AA0MH6.

Electronic Properties
As can be seen in Table 6, A, A0 and M elements lose electrons
(except in Ru, where it has small negative value), while H atoms
gain electrons. Thus, we can expect an ionic character in A-H, A0-H,
and M-H bonds. Even though A and A0 sites are symmetrically
equivalent, the atoms at those sites can lose a different amount of
electrons. This is mainly because atoms at those sites have
different oxidation states. Based on Table 6, Na, K, and Cs alkali
atoms have their usual oxidation state (+1), while alkaline earth
atoms such as Ca, Sr, and Ba lose more than 1 electron as they can
donate up to 2 electrons. Al, Si, and Tl exhibit their most common
oxidation states, which are +3, +4, and +1, respectively. It is
reported that first-principles computations provide only negligible
changes in the local transition-metal charge for semiconducting
crystals36. Therefore, we propose that we can consider MHn�

6
complex as a single unit since the M-H bond lengths are very short
compared to other H-related bonds. n can be found by computing
ΔqM+ 6 × ΔqH, which is greater than 2 for all the M atoms except
for Ni and Si. For those two atoms, n ≈ 1.6. Therefore, we can
expect MH2�

6 for Si and Ni complexes, while MH3�
6 for the rest of

the complexes. Kadir et al. suggest that IrH3�
6 complexes exist in

AA0IrH6 semiconductors27. Therefore, MH3�
6 can be the common

complex that exists in AA0MH6 materials.
Figures 7 and 8 show the band structures and partial density of

states (PDOS) of the AA0MH6 materials. It is clear that all six AA
0MH6 materials are semiconductors. The bandgap for each
material is mentioned in Table 7. The DFT calculations with PBE
exchange-correlation functional underestimate the band gaps due
to self-interaction error. It has been shown that the Heyd-Scuseria-
Ernzerhof (HSE) screened Coulomb hybrid functional calculations
provide reasonable estimation for the band gaps of semiconduc-
tors37,38. HSE06 uses 1

4 of exact exchange and 3
4 of PBE exchange.

Based on our HSE06 computations, all the AA0MH6 semiconduc-
tors can have bandgaps greater than 2.00 eV (see Supplementary
Information). The bandgap range of wide-bandgap semiconduc-
tors is considered as the range above 2 eV23. Thus, we can identify
that those materials are wide-bandgap semiconductors. As
reported by Kadir et al., NaCaIrH6, NaSrIrH6, NaBaIrH6, KSrIrH6

and KBaIrH6 have bandgaps between 2.91 and 3.33 eV27 (see
Supplementary Information). Wide-bandgap semiconductors are
vital for manufacturing optical devices emitting green, red, and UV
frequencies and also power devices functioning at higher
temperatures23,24.
Other than in BaCsAlH6 and CsKSiH6, all the AA0MH6 materials

have their conduction band minimum (CBM) at X high-symmetric
K-point. The CBM of BaCsAlH6 and CsKSiH6 are at Γ points. The
valence band maximum (VBM) of BaNaRhH6, SrTlIrH6, YMnZnH6,
NaYRuH6, and AgZrMnH6 exist at W K-point. BaSrZnH6, KNaNiH6

and BaSrZnH6 have VBM at X, while that of CaScMnH6 and
AgZrMnH6 is at K high-symmetric point in the reciprocal space.
Thus, both CBM and VBM of BaSrZnH6 and KNaNiH6 reside at X K-
point, indicating those materials are direct bandgap semiconduc-
tors. Direct bandgap semiconductors are preferred for LED and laser
devices over their indirect counterparts. Wide-bandgap semicon-
ductors with direct bandgap are widely investigated for solar cells
due to optical transparency39. BaNaRhH6, KNaNiH6, CaCsMnH6, and
NaYRuH6 materials have very flat bands near the Fermi level, which
is indicated by zero energy. Relative to other materials, BaSrZnH6

contains narrow (less flat) bands near the Fermi level. As a result,
this can lower the effective mass of the carriers. Some research has
shown that low effective mass will help developing efficient
thermoelectric devices40–42. As shown by electronic band theory,
the electron effective mass can be very high in the flat bands43. It is
also shown that flat bands at the bottom of the conduction bands
can provide high thermoelectric power44. YMnZnH6 and ScZnMnH6

materials also exhibit that the CBM are relatively flat. Moreover, as
shown in Fig. 7, we can modulate the shape of the bands near the

Table 3. The lattice parameter (a) and bond lengths in Å, and the
formation energies in eV/atom for AA0MH6 materials.

Material a A-H M-H A-M A-A0 Eform

BaNaRhH6 5.5105 2.76924 1.67023 3.37448 3.89651 −0.4678

BaSrZnH6 5.47201 2.73801 1.83004 3.35091 3.8693 −0.3496

BaCsAlH6 5.84781 2.93934 1.76669 3.58104 4.13503 −0.3159

SrTlIrH6 5.56492 2.79622 1.69039 3.4078 3.93499 −0.3488

CsKSiH6 5.86576 2.968 1.61863 3.59203 4.14772 −0.1817

KNaNiH6 5.40252 2.73044 1.51196 3.30835 3.82016 −0.1715

NaYRuH6 4.97064 2.48578 1.70949 3.04388 3.04388 −0.4999

CaScMnH6 4.74883 2.37467 1.64383 2.90805 3.35793 −0.5261

YZnMnH6 4.69455 2.34755 1.62362 2.87481 3.31955 −0.3099

NaZrMnH6 4.64255 2.32129 1.63348 2.84297 3.28278 −0.3111

AgZrMnH6 4.62246 2.31127 1.62077 2.83067 3.26857 −0.2070

ScZnMnH6 4.50635 2.25322 1.60682 2.75957 3.18647 −0.3070
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Table 4. The mechanical properties of the AA0MH6 materials.

Material C11 C12 C44 K G Y μ

BaNaRhH6 60.514 20.174 11.901 33.621 14.722 38.541 0.309

BaSrZnH6 86.238 20.648 30.492 42.512 31.393 75.577 0.204

BaCsAlH6 50.455 16.174 13.119 27.601 14.602 37.24 0.275

SrTlIrH6 52.588 26.735 5.549 35.353 7.845 21.915 0.397

CsKSiH6 28.939 10.454 7.203 16.615 7.960 20.592 0.293

KNaNiH6 36.027 11.720 6.618 19.822 8.463 22.225 0.313

NaYRuH6 131.450 36.248 44.149 67.982 45.499 111.600 0.226

CaScMnH6 192.385 28.606 38.997 83.199 52.744 130.627 0.238

YZnMnH6 171.063 50.92 23.563 90.968 34.649 137.167 0.331

NaZrMnH6 196.714 47.003 57.275 96.907 63.761 156.876 0.23

AgZrMnH6 190.957 85.654 50.274 120.755 51.211 134.606 0.314

ScZnMnH6 191.749 60.602 60.537 104.317 62.504 156.295 0.250

The C11, C12, and C44 elastic constants, bulk modulus (K), Shear modulus (G) and Young’s modulus (Y) were calculated in GPa. μ is the isotropic Poisson’s ratio.

Table 5. The density (ρ), longitudinal (νl), transverse (νt) and average (νD) sound velocity, Debye temperature (θD) and specific thermal capacity at 300
K (C300 K

v ) for the AA0MH6 materials.

Material ρ (gcm−3) νl (ms−1) νt (ms−1) νD (ms−1) θD (K) C300 K
v

(JK−1mol−1)

BaNaRhH6 4.0401 3630.4733 6902.4643 2858.5852 337.0342 119.113

BaSrZnH6 3.4683 4932.0885 12405.1302 3901.0279 463.1759 127.961

BaCsAlH6 2.9078 4023.4038 7286.8499 3164.0609 351.5324 115.715

SrTlIrH6 5.4546 2898.0880 4445.3015 2265.8564 264.5375 120.116

CsKSiH6 1.9584 3728.7223 5212.2198 2901.6325 321.3897 109.520

KNaNiH6 1.5423 4490.9338 5199.8403 3445.3146 414.3299 121.746

NaYRuH6 3.4194 6133.7278 14188.8339 4846.6876 633.4998 112.140

CaScMnH6 2.6144 7663.0364 14886.6869 6036.7538 825.9060 110.588

YZnMnH6 3.9895 5863.5797 10231.3126 4606.2522 637.4814 116.661

NaZrMnH6 3.3572 7361.3351 16649.9772 5814.9095 813.7671 106.507

AgZrMnH6 5.0489 6118.9252 12770.7618 4827.2738 678.4886 106.507

ScZnMnH6 3.5897 7230.2461 15811.8943 5708.4879 823.0192 115.952

(J
K

m
ol

)
-1

-1

Fig. 6 The specific heat capacity (Cv) of AA0MH6 materials as a
function of temperature (T). Here, broken lines indicate Cv of
AA’MnH6 and NaYRuH6 materials, while solid lines indicate that of
the other materials.

Table 6. The Bader charge transfer (Δq) in electrons for each element
of AA0MH6 Materials.

Material ΔqA ΔqA0 ΔqM ΔqH

BaNaRhH6 1.4256 0.8613 0.0127 −0.3841

BaSrZnH6 1.3057 1.4588 0.6579 −0.5701

BaCsAlH6 1.4853 0.7135 3.0000 −0.8581

SrTlIrH6 1.5551 0.4674 0.2944 −0.3855

CsKSiH6 0.7625 0.8483 4.0000 −0.9345

KNaNiH6 0.7781 0.8734 0.5139 −0.3612

NaYRuH6 0.8341 1.8845 −0.1099 −0.4356

CaScMnH6 1.3626 1.6427 0.2943 −0.5509

YZnMnH6 1.7862 0.7053 0.3301 −0.4717

NaZrMnH6 0.8179 1.8115 0.3468 −0.4978

AgZrMnH6 0.2876 1.8191 0.3904 −0.4168

ScZnMnH6 1.6590 0.7511 0.2937 −0.4484
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Fermi level using the chemical formula. As a result, the thermo-
electric properties can be tuned. Therefore, we propose that
AA0MH6 semiconductors should be investigated for thermoelectric
applications. Our partial density of states (PDOS) studies reveal that

d-orbitals of transition metal atoms reside at the M site dominate in
the valence region near the Fermi level. Even though the transition
metal atoms can be found at A and A0 sites, their pdos of d-orbitals
are not significant near the Fermi level.

Fig. 7 Band structures of AA0MH6 materials. Fermi energy marks zero energy.
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METHOD
Generative adversarial network
The hypothetical materials used in our research are generated by our
CubicGAN22, a generative adversarial network (GAN) based model for

generating cubic crystal structures in a high-throughput manner. Our GAN
model consists of a generator network and a discriminator/critic network.
The discriminator learns to tell real materials from fake materials generated
by the generator. The generator learns how to generate samples with
similar distribution as the training samples. After trained, we can sample
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Fig. 8 Partial density of states (PDOS) of AA0MH6 materials. Fermi energy marks zero energy.
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from the generator to generate nonexisting materials. In CubicGAN, we
focused on generating ternary and quaternary materials with the space
groups 221, 225, and 216. Moreover, to simplify the problem, CubicGAN
uses special fractional coordinates, all in the set of {0.0, 0.25, 0.5, 0.75}. The
CubicGAN is trained using material data from OQMD45,46 and is evaluated
on material data from Materials Project47 and ICSD48. The main framework
of CubicGAN and the post-processing for the generated materials are
shown in Fig. 9. It is notoriously hard to train the original GAN model
because the adversarial loss is not continuous in the generator, which
causes vanishing gradients and saturation in the discriminator. We take
advantage of the Wasserstein GAN with gradient penalty by penalizing the
norm of gradients of the critic with respect to the inputs18. The critic takes
real materials and fake materials generated by the generator and then
outputs a score which can be interpreted as how real the input materials
are. The score is used to update the parameters of the models of the
generator and the critic. The adversarial loss is defined as:

L ¼ E
~x�Pg

½Dð~xÞ� � E
x�Pr

½DðxÞ� þ λ E
x̂�Px̂

½ðk∇x̂Dðx̂Þk2 � 1Þ2� (6)

where D means the score function from the critic. x̂ is the linear
interpolation between a real material x and the generated one x̂ and
E

x̂�Px̂

½ðk∇x̂Dðx̂Þk2 � 1Þ2� is the gradient penalty which enforces gradients

with the norm at most 1 everywhere. λ is set 10 by default in this work.
Conditioning on random noise, three or four-element combinations, and

space group, the generator not only generates materials with existing
prototypes but also generates stable ones with nonexisting prototypes.
When the CubicGAN generates 10 million materials, it can rediscover most
of the cubic materials in Materials Project and ICSD. In CubicGAN, we only
focus on the generated materials with prototypes, which are defined by
the anonymous formula and the space group ID. In total, 24 and 1
nonexisting prototypes are found in 10 million generated ternary and

quaternary materials, respectively. Sub-figure (a) of Fig. 9 shows how to
filter out the materials. On average, 90% of generated materials have
readable CIFs, and we only select materials with neutral charge and
negative formation energy predicted by CGCNN49. After filtering down
materials with nonexisting prototypes, we performed DFT calculations, and
36847 candidate materials have been relaxed successfully. Further,
506 stable materials are verified by phonon dispersion.

Nonmetal - metal classifier
To develop a nonmetal - metal classifier, we first collected the pretty
formulas, Bravais lattice type, and bandgap details of all the cubic
quaternary materials from the MP database. There were 2578 nonzero
bandgap materials (semiconductors and insulators) and 1,438 metals in the
collected dataset. We considered 55 elemental and electronic structure
attributes, such as the first ionization energy, atomic volume, electro-
negativity, total number of valence electrons, and number of valence
electrons in s, p, d, and f orbitals, to develop the feature set (see
Supplementary Information). The weighted average (Avg.) and a maximum
difference of those properties for a given chemical formula were added to
the feature set. The Avg. of a property S of a quaternary compound
AαBβCγDδ was calculated based on the following expression,

SAvgAαBβCγDδ
¼ 1

αþ βþ γ þ δ
ðαSA þ βSB þ γSC þ δSDÞ; (7)

where SA, SB, SC and SD are the property S of A, B, C, and D elements,
respectively. Altogether, 119 features were considered for training the
models.
We created the DNN classifier with two hidden layers using Keras50 on

top of TensorFlow51. The first and second hidden layers of DNN include
200, and 100 neurons, respectively. To include the nonlinearity in the
system, we shifted the summed weighted inputs of each layer through the
rectified linear unit (ReLu) activation function. We randomly dropped out
5% of the units of the hidden layers while training the models. This process
is very important for limiting the overfitting of training data. Another useful
approach to diminishing overfitting is weight regularization. We employed
Ridge (L2) regularization method for adding penalties during updating
weights. The adaptive moment estimation (Adam) optimizer with a 0.001
learning rate was considered with binary cross-entropy as the loss function
and the metric during the calculations. The optimized number of epochs
and batch size are 500 and 1500, respectively.
We developed a random forest classifier (RFC) as the second model,

which uses an ensemble technique. Here, data is divided randomly, which
is known as bagging and carries out training with multiple decision trees.
The final prediction is given by averaging the output of all the decision
trees. The hyperparameter optimization was performed using Grid-
SearchCV algorithm as implemented in the Scikit-learn code52. The
optimized number of decision trees, minimum samples split, minimum
samples leaf, and maximum depth are 500, 10, 3, and 90, respectively.
Furthermore, we used the RFC model to study the feature importance for
whole quaternary materials data set. It will help discovering semiconduc-
tors in the future.
For both DNN and RFC models, the cubic quaternary materials dataset

with 4016 materials was split randomly into 98 % and 2 % as the training
and testing sets, respectively. The 10-fold cross-validation with accuracy as
the scoring method was performed on the training set. Here, the training
set was partitioned into 10 subsets, where 9 subsets were for training the
model and the remaining subset was for validating.

Density functional theory (DFT) calculations
Density functional theory calculations were performed as implemented in
the Vienna ab simulation package (VASP) code53–56. The electron wave
functions were described using the PAW pseudopotentials57,58. The
exchange-correlation interactions were treated based on the generalized
gradient approximation (GGA) within the Perdew-Burke-Ernzerhof (PBE)
formulation59,60. The energy threshold value of the plane-wave basis was
set as 500 eV. In addition, the energy convergence criteria were set to 10−8

eV, and the force convergence criterion for the ionic steps is set to 10−2

eV/Å. The Brillouin zone integrations were performed using a dense
k-point mesh within the Monkhorst-Pack scheme for the structure
optimizations, band structure, density of states, mechanical properties,
and phonon calculations. For instance, a 14 × 14 × 14 K-mesh was used for
BaNaRhH6 with 5.5105 Å lattice constant. The 2 × 2 × 2 supercells were
employed for obtaining Phonon dispersions using the Phonopy code35.

Table 7. The band gap, conduction band minimum (CBM), valence
band maximum (VBM) and type of semiconductor for AA0MH6

materials.

Material Band Gap (eV) CBM VBM Type

BaNaRhH6 3.0181 X W Indirect

BaSrZnH6 1.5864 X X Direct

BaCsAlH6 2.9382 G X Indirect

SrTlIrH6 1.6245 X W Indirect

CsKSiH6 2.1647 G X Indirect

KNaNiH6 3.3024 X X Direct

NaYRuH6 2.5322 X W Indirect

CaScMnH6 1.2716 X K Indirect

YZnMnH6 1.6003 X W Indirect

NaZrMnH6 1.5694 X K Indirect

AgZrMnH6 1.4111 X K Indirect

ScZnMnH6 1.6732 X W Indirect

Fig. 9 The main framework of CubicGAN. a WGAN architecture
and b postprocessing of generated samples. Z is the random noise.
E is the element vector embedded by 23 element properties. SGP is
the one hot embedding for the space group.
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The elastic constants were calculated by employing density functional
perturbation theory (DFPT) as implemented in VASP61. VASPKIT code31 was
used to obtain the bulk modulus (K), Shear modulus (G), Young’s modulus
(Y), and Poisson’s ratio (μ) of the materials based on the Hill method62.
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