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Abstract COVID-19 global outbreak has been significantly damaging the human well-being, life

style of people and the global economy. It is clear that the entire world is moving into a dangerous

phase of this epidemic at the moment. With absence of a preventive vaccine, the governments across

world implement, monitor and manage various public health and social distancing measures to con-

trol the spread of this extremely contagious disease and it is found that most of these responses have

been critical results of numerous mathematical and decision support models. In this study, SEIR

compartment structure is used to model the COVID-19 transmission in Sri Lanka. Reported cases

data during the first 80 days of the outbreak is used to model the time dependent transmission rate

of the disease. Optimal transmission rates and initial size of the exposed and infected sizes of the

populations are then estimated matching between clinically identified cases to model based simu-

lated outcomes.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Corona virus disease 2019 designated as COVID-19 is an infec-
tion in the respiratory system of humans caused by a new

pathogen named SARS-Cov-2. The initial cases of the disease
were identified during late December 2019 from Wuhan city,
Hubei province in China [1]. Since then within six months, this
novel virus has spread cross almost all the countries and terri-
tories in the world nearly infecting more than 9 million and
causing around 450,000 deaths [2]. The world’s entire popula-

tion is at risk of contacting the virus and the global economy is
moving into a recession due to worldwide lock down of cities,
halting production, restring travel across countries due to

boarder closures, and unemployment. In addition, the change
in human life style and getting used to live with more social
distancing measures to minimize further transmission of the

disease found to have caused various social and psychological
issues among vulnerable groups of people [3].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2020.11.010&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wptharindu86uoc@gmail.com
https://doi.org/10.1016/j.aej.2020.11.010
http://www.sciencedirect.com/science/journal/11100168
https://doi.org/10.1016/j.aej.2020.11.010
http://creativecommons.org/licenses/by-nc-nd/4.0/


1558 W.P.T.M. Wickramaarachchi, S.S.N. Perera
Sri Lanka reported its first local COVID-19 case on 10
March 2020 who was a tourist guide. The government of Sri
Lanka took serious measures against the virus spread such

as closing down schools and universities, limiting non-
essential work and travel, closing down country’s air port for
all international arrivals, imposing nationwide curfew, and

introducing mandatory quarantine for all overseas travelers
[4]. Due to the timely public health and social distancing mea-
sures introduced, the country did not experience dramatic rise

in cases during the first 40 days of the outbreak, however sud-
den rise was taken place as a result of a large cluster in a naval
base. The again after 75 days, another jump was reported due
to repatriated Sri Lankan immigrant workers mainly from

Middle-East countries [5]. The total corona virus infections,
active cases, deaths and recoveries in Sri Lanka recorded for
the first 82 days of the epidemic are presented in the Fig. 1.

As a result of this extremely dangerous public health prob-
lem the whole world has to face, multiple research groups have
begun their work to come up with a suitable vaccine candidate

or a treatment drug against COVID-19, however most of the
developments are in early phases in the cycle [6]. Thus, predict-
ing the transmission though modeling and implementing, mon-

itoring, and managing suitable control measures have been
significantly critical to minimize the burden. Mathematical
models such as in SIER (Susceptible-Exposed-Infected-Recov
ered) population compartments are nowadays critical in epi-

demiological decision making as they reveal significant infor-
mation on the dynamic, parameters and their sensitivity, and
efficacy of control measures [4,7].

This paper mainly has got two objectives; the first study
focuses to adopt an compartmental SEIR type mathematical
model to predict the infections and to reveal useful qualitative

information about the dynamic of COVID-19 transmission in
Sri Lanka. Reported cases are used to estimate the doubling
time of cases in the community and hence the initial transmis-

sion probability is approximated assuming exponential growth
behavior of cases. This measure is also applied to model the
time-dependent transmission probability during the first
0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

time(days)

C
um

ul
at

iv
e 

ca
se

s

(a)

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

time(days)

D
ea

th
s

(c)

repatriated imported cases

naval  base outbreak

Fig. 1 Cumulative cases (a), active cases (b), deaths (c) and recovered

epidemic.
82 days of the epidemic. Secondly, an optimization problem
is established to estimate parameter values for the transmission
probability b, initial sizes of the exposed E0 and infected I0
populations, matching between total reported COVID-19
cases and cumulative infections resulted through numerical
simulation of the mathematical model. The number of deaths

due to COVID-19 reported in Sri Lanka is significantly low
thus, we drop this population from the optimization problem.

2. Methods

2.1. Mathematical model

Mathematical models in infectious disease have a century long
history. Compartment models governed by system of differen-

tial equations such as SIR (Susceptible-Infected-Recovered)
and SEIR (Susceptible-Exposed-Infected-Recovered) have
been widely used in literature, and these models have provided
not only critical qualitative aspects of the disease transmission

but also have predicted the transmission dynamic for certain
extend. One significant advantage of these type of models
has been that they accommodate to test the level of various

control measures and evaluate the efficacy of numerous treat-
ment procedures to communicable diseases. Thank to comput-
ers, the simple to very complex mathematical models with

large parameter spaces can be numerically simulated, and the
outcomes are extremely useful in decision making related to
public health [7,4,15].

In this study, we adopt SEIR (Susceptible-Exposed-Infec
ted-Recovered) compartmental approach to model the trans-
mission of COVID-19 in Sri Lanka. It is assumed that all
the clinically identified positive patients for COVID-19 virus

are homogeneous with no impact of demographic factors such
as age, gender and history of chronic diseases on the disease
progression. Natural birth and death process was considered

to be negligible and those who recovered to have developed
complete immunity against the virus. In this simple model,
the susceptible individual may become exposed to the novel
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corona virus at a probability of b, and this is also defined as
the transmission rate of the virus. Let r denotes the rate an
exposed individuals become infectious. As a result of treat-

ments or due to the immunity, the patient can be recovered
at a rate of c. It is noted that some patients whose condition
get worse could end up with deaths with a rate of l. It should
be noted that the effective contact rates between the suscepti-
ble and infected populations depend on the number of individ-
uals in the entire population ðNÞ. The transmission rate

between S and I is assumed to be dðS=NÞ
dt

¼ �b SI
N2, and here SI

N2

is the fraction of those contacts between an infectious and sus-
ceptible individual which result in the susceptible person
becoming infected. Based on these assumptions and dynamics,

the transmission of COVID-19 can be represented as follows in
a schematic diagram (Fig. 2).

The SIER model of COVID-19 transmission can now be
established as a system of non-linear differential equations

given by

dS

dt
¼� b

N
SI ð1Þ

dE

dt
¼ b
N
SI� rE ð2Þ

dI

dt
¼rE� cI� lI ð3Þ

dR

dt
¼cI ð4Þ

where N is the total size of the population.
The initial conditions for the model is as

Sð0Þ ¼ S0 ¼ N� E0 � I0;Eð0Þ ¼ E0; Ið0Þ ¼ I0, and

Rð0Þ ¼ R0. We let the set of solutions denoted by X to the sys-
tem of nonlinear differential equations as

X ¼ fðS;E; I;RÞ 2 R4
þ : Sþ Eþ Iþ R 6 N;S;E; I;R P 0g:

ð5Þ
Initially, the entire population is susceptible to COVID-19,

thus, we let

N � S and this gives b
N
SI � bI. Now the model with infec-

tion groups can be written as

dE

dt
¼bI� rE ð6Þ

dI

dt
¼rE� cI� lI ð7Þ
Fig. 2 Schematic diagram.
or in matrix form as

E

I

� �0
¼ �r b

r �ðcþ lÞ

� �
:

E

I

� �

At the early stage of the epidemic, there is a non-linear rela-
tionship between the total numbers of cases, IðtÞ and the force
of infection k which is given as follows [8,9]

IðtÞ / Ið0ÞexpðktÞ ð8Þ
where Ið0Þ denotes the initial size of the epidemic. Then the
doubling time ðDÞ of the number of infections can be obtained
as

D ¼ ln 2

k
: ð9Þ

The doubling time is a useful measure in public health point of

view that explains the number of days which takes to double
the number of infections. This also reveals critical information
such as the level of risk the population is exposed to and the

rate of transmission. The initial growth rate of the epidemic
is determined by the largest eigenvalue k of the linear system,
and this is given by

k ¼ 1

2
�ðcþ rþ lÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcþ l� rÞ2 þ 4br

q� �
: ð10Þ

Combining Eqs. 9 and 10 yields the following relationship for

the transmission probability of the virus b.

b ¼
ln 4
D
þ ðcþ lþ rÞ� �2 � ðcþ l� rÞ2

4r
ð11Þ
2.2. Analysis of the model

Basic reproduction number R0 stands for the number of sec-
ondary infections those can be produced by a single infected

patients on average [10,11]. It is very critical to distinguish
new infections in the dynamic of the population to compute
R0.

Now we present the computation of the basic reproductive

number R0 for the COVID-19 transmission model. For this
purpose we now define the new vector of only infected vari-
ables X ¼ ðE; IÞ containing the classes which are responsible

to transmit the virus in the population. Now we establish the
following two dimensional system of differential equations
involving E and I.

dE

dt
¼ b
N
SI� rE ð12Þ

dI

dt
¼rE� ðcþ lÞI ð13Þ

The next generation matrix method is applied for the com-
putation of R0 [12,13]. Accordingly, necessary matrices F and
V are obtained as follows:

F ¼ 0 b
N
S

0 0

 !
; ð14Þ

and

V ¼ r 0

�r ðcþ lÞ
� �

: ð15Þ
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The basic reproduction number is defined as the spectral

radius q of the matrix FV�1 [12]. Thus, we obtain the following
formula for R0 together with the assumption S � N initially

R0 � b
cþ l

: ð16Þ

Substituting the expression for b in Eq. 11 we get

R0 �
ln 4
D
þ ðcþ lþ rÞ� �2 � ðcþ l� rÞ2

4rðcþ lÞ ð17Þ

The change in R0 with respect to varying doubling time D is
given in Fig. 3 and it clearly indicates that R0 reduces as the

doubling time increases implying reduced level of exposed risk
to the disease.

The Jacobian matrix at the DFE J0 is then obtained as

J0 ¼
�r b

r �ðcþ lÞ

� �
: ð18Þ

By diagonalizing J0, we get the characteristic polynomial of the

form a0x
2 þ a1xþ a2 ¼ 0 where

a0 ¼ 1
a1 ¼ cþ lþ r and.
a2 ¼ rðc� bþ lÞ.
Routh-Hurwitz stability criterion for second order polyno-

mials is used to determine the stability of the DFE. According
to the criteria, the coefficients should satisfy a0 > 0; a1 > 0 and

a2 > 0. Clearly a0 > 0 and a1 > 0. Thus, DFE is asymptoti-

cally locally stable if c� bþ l > 0 if and only if b
cþl < 1 if

and only if R0 < 1 [14,15].

3. Estimation of initial parameters

In the model for COVID-19 in Eqs. (1)–(4), the transmission

probability b is assumed to be fixed. However, in the realistic
case this transmission probability depends on time as the gov-
ernments introduces various control measures to minimize the

transmission of virus with respect to time. This results a SEIR
model with a time depended transmission rate as follows:
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dS

dt
¼� bðtÞ

N
SI ð19Þ

dE

dt
¼ bðtÞ

N
SI� rE ð20Þ

dI

dt
¼rE� cI� lI ð21Þ

dR

dt
¼cI ð22Þ

where

bðtÞ ¼

b1; if t < 14;

b2; if 14 6 t < 28;

b3; if 28 6 t < 42;

b4; if 42 6 t < 56;

b5; if t P 56;

8>>>>>><
>>>>>>:

ð23Þ

It should be noted that if bi ¼ b for i ¼ 1; 2; 3; 4; 5 then the
model reduces to the system in Eqs. (1)–(4).

Next, we attempt to estimate the parameter b, and the ini-
tial exposed and infected populations E0 and I0 using reported
COVID-19 cases data in Sri Lanka. We define the following

least-squares functional for the matching between simulated
output from system Eqs. (1)–(4) and the reported data for
the period of eighty days since the first local COVID-19 case

was identified during the second week of March 2020 [16,17].

JðuÞ ¼
Z T

0

ðIðtÞ þ RðtÞÞ � YðtÞ½ �2 þ 1

2
C1b

2 þ 1

2
C2E

2
0

þ 1

2
C3I

2
0dt; ð24Þ

where YðtÞ for t 2 ½0;T� is the time series of clinically identified

COVID-19 commutative cases in Sri Lanka and that should be
matched with the sum of simulated results for infected IðtÞ and
recovered RðtÞ for t 2 ½0;T� . Here u ¼ ðb;E0; I0Þ the unknown
parameters should be estimated. The regularization term
1
2
C1b

2 þ 1
2
C2E

2
0 þ 1

2
C3I

2
0 is included to the cost functional to

ensure the convexity where Ck for k ¼ 1; 2; 3 are constants
and they are responsible to relatively balance the contribution
12 14 16 18 20

 time (days)

respect to doubling time D.



Table 1 The estimated values for true b and its 95%

confidence interval. In Eq. (11), the rest of the parameter

values are c ¼ 1=25;l ¼ 0:00001 and r ¼ 1=3 [4,5,7].

Time Period True value of b 95% Confidence Interval
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from least-squares error. We find the optimal control measures

u� ¼ ðb�;E�
0; I

�
0Þ such that

Jðb�;E�
0; I

�
0Þ ¼ min

U
Jðb;E0; I0Þ ð25Þ

with b� 2 ð0; 1Þ;E�
0 P 0 and I�0 P 0.

4. Optimization

Now we discuss the method of obtaining the solution to the
problem (24). For this, it is necessary to define the Lagrangian

and Hamiltonian for the optimal control problem (24). Thus,
the Lagrangian L is stated as

LðI;R;Y; uÞ ¼ IðtÞ þ RðtÞ � YðtÞ½ �2 þ 1

2
C1b

2 þ 1

2
C2E

2
0

þ 1

2
C3I

2
0; ð26Þ

and for the Hamiltonian we let X ¼ ðS;E; I;RÞ and
k ¼ ðk1; k2; k3; k4Þ, and we write

HðX; u; kÞ ¼ LðI;R;Y; uÞ þ k1 � b
N
SI

� �

þ k1
b
N
SI� rE

� �
þ k3 rE� cI� lI½ �

þ k4 cI½ � ð27Þ
where kj; j 2 f1; 2; 3; 4g are the adjoint variables. Next deriva-

tion is the necessary conditions as described in detail in
[18,19] for the Hamiltonian H for the equation given in (27).

Theorem 1. Given an optimal control u� ¼ ðb�;E�
0; I

�
0Þ and a

solution X� ¼ ðS�;E�; I�;R�Þ with respect to the system Eqs.
(1)–(4), there exist adjoint variables kj; j 2 f1; 2; 3; 4g satisfying

dk1
dt

¼ Ibðk1 � k2Þ
N

ð28Þ
dk2
dt

¼rðk2 � k3Þ ð29Þ
dk3
dt

¼2ðY� R� IÞ � k4cþ Sb
N

ðk1 � k2Þ þ k3ðcþ lÞ ð30Þ
dk4
dt

¼2ðY� R� IÞ ð31Þ

with transversality conditions

kjðtfÞ ¼ 0; j 2 f1; 2; 3; 4g: ð32Þ

Proof. The system Eqs. (1)–(4) is obtained by taking the
derivative

dX

dt
¼ @Hðt; u�; k1; k2; k3; k4Þ

@k

and the adjoint system is obtained taking

dk
dt

¼ �@Hðt; t; u�; k1; k2; k3; k4Þ
@X� : �
t < 14 0.0343 [0.0257, 0.0439]

14 6 t < 28 0.0142 [0.0124, 0.0162]

28 6 t < 42 0.0106 [0.0099, 0.0114]

42 6 t < 56 0.0126 [0.0121, 0.0132]

t P 56 0.0104 [0.0100, 0.0109]
5. Numerical results and discussion

In this section, we obtain the numerical solutions for the sys-

tem given in Eqs. (21)–(24) considering time varying transmis-
sion rate b as established in (23). The differential system is
numerically solved using ODE45 solver in MATLAB package
that uses a variable step Runge–Kutta Method to solve differ-

ential equations numerically. The time dependent form of b is
computed considering daily COVID-19 data in Sri Lanka for
the first 80 days from the first local case is reported. The fol-

lowing algorithm is applied for the computation.

STEP 1
Select the COVID-19 total daily cases for given period.

STEP 2

Fit the exponential curve considering, IðtÞ ¼ aexpðktÞ; a 2 Rþ

with 95% confidence interval.

STEP 3

Obtain force of infection k, and then compute doubling time
using Eq. (9).

STEP 4

Repeat the process choosing different time intervals as indi-
cated in (23).

STEP 5
Compute the true value of b and 95% confidence interval for
each time period using Eq. (11).

The computed true values of b and the 95% confidence
interval for each time period is presented in Table 1.

In the context of local transmission of COVID-19 in Sri

Lanka, the spread triggered due to a large number of imported
cases to the country mainly from European Union countries
and from South Korea. Thus, for the simulation we take

Eð0Þ ¼ 600 and Ið0Þ ¼ 50. We also let Sð0Þ ¼ N�
Eð0Þ � Ið0Þ and Rð0Þ ¼ 0.

According to Fig. 4, susceptible population is decreasing

with respect to time whilst the population of infected people
grows exponentially over the first 10–15 days of the outbreak,
reaches the maximum size of the active infections in the range

between 500–600, and then decays over the time. The out-
comes clearly indicate the sensitivity of transmission probabil-
ity b as there are three distinct curves for its true value, upper
and lower boundary of the 95% confidence interval. Fig. 4 plot

(d) represents the dynamic of the total cases reported in Sri
Lanka for the period, that is the sum of infected and recovered
patients, however, deaths are not included as there are only 11
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fatalities over the time horizon considered for this study which

is about 0.56%.
Now the system in Eqs. (1)–(4) is solved to estimate the

parameters b;E0 and I0 matching with reported COVID-19

cases in Sri Lanka in the first 80 days of its outbreak. Numer-
ical schemes presented in [20–22,16] are coupled with Runge–
Kutta method of order four to carry out the simulation of the

problem in optimization. The algorithm stops once the termi-
nation condition jjJðumþ1Þ � JðumÞjj < ERR is satisfied. The
outcome of this simulation is given in Fig. 5. The blue dotted
line represents the reported COVID-19 cases whilst the red

thick line stands for the simulated curve.
A local minimum is obtained for the optimization problem

in (24) and the estimated parameter values are
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The parameter values are N ¼ 22000000; c ¼ 1=25; l ¼ 0:00001 and r
b ¼ 0:3582;E0 ¼ 17 and I0 ¼ 0 suggesting that there were

around significant number of exposed cases while no infections
initially. It is clearly observed from Fig. 5 that during about
first 25 days, the simulated curve and the actual data fit closely

however, there are two major deviations as a result sudden rise
in COVID-19 cases, firstly due to the outbreak in Naval Bases
(after 45 days) and secondly due to imported infected cases of

migrant Sri Lankan workers repatriated from Middle-East
countries (after 75 days).

6. Conclusions

The wide spread transmission of COVID-19 has been the
major public health, social and global economic concern at
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the moment. Entire world is transforming into new norms to
live with this novel virus in the absence of an effective vaccine
found so far, however, number of clinical trials are in progress

to assess a suitable vaccine candidate against corona virus.
Mathematical models are used to predict the dynamic of

the disease, evaluate control measures, and obtain optimal pol-

icy decision against the disease burden. In this study, we apply
SEIR model to predict the dynamic of COVID-19 in Sri Lanka
and the transmission rate b is estimated as a step function in

time using real data of transmission in the country reported
during the first 82 days of the epidemic assuming the exponen-
tial growth of cases in the early period of the epidemic. The
doubling time parameter is defined and it is estimated using

reported data in Sri Lanka during the early stage of the epi-
demic. This measure provides critical insight about the
dynamic in terms of the risk faced by the population, and

the level of transmission of the virus over the community.
The transmission probability and the basic reproduction num-
ber of the disease also modeled using the doubling time in

functional form. It is shown that if effective public health
and social distancing measures are able to increase the dou-
bling time then the basic reproduction number can be reduced.

The numerical simulation of the SEIR model using time
dependent transmission probability suggests that the peak of
the infected cases may be occurred during the first 10–20 days
of the outbreak, and its size is closed to 600 patients. In addi-

tion, the simulated model based outcomes are matched
between the reported COVID-19 cases introducing a cost func-
tional, and the optimal average transmission rate, initial size of

the exposed cases, and size of infected cases are estimated
receptively as b ¼ 0:3582;E0 ¼ 17 and I0 ¼ 0.

The plot representing simulated cases and the reported

cases show a clear similarity in terms of the exponential growth
behavior during the early phase of the COVID-19 outbreak in
Sri Lanka, however, there can also be seen couple of deviations

between the two curves mainly due to the large cluster of cases
from the Naval Base outbreak and as a result the repatriated
migrant citizens with the virus mainly from high risk middle-
East countries.
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