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ABSTRACT
Multilevel modeling is a modern approach to deal with hierarchical or a
nested data structure which can assess the variability between clusters.
Bayesian Markov Chain Monte Carlo (MCMC) methods of estimations are
advanced methods applicable for estimating multilevel models. However,
these estimation methods are not as yet tested to identify its’ performan-
ces as well as the properties associated with these estimation methods.
This study targets to conduct a comparison of Bayesian MCMC methods
which are developed for multilevel models where the response is normally
distributed. The comparison is based upon extensive simulations and an
application to a real-life dataset. The performance of Gibbs sampling (GS)
and Metropolis Hastings (MH) methods are compared using a simulation
study and additionally the factors which can affect the performance of
both MCMC methods are identified. Practicality of these methods in real
world scenario is confirmed through the application of MCMC method to a
dataset. In the simulations though the Metropolis Hastings (MH) shows
slightly better performance than Gibbs, there is no evidence to indicate
that significant differences exist between these methods except for small
samples where MH is superior. The results from the example are not as
clear as from the simulations.
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1. Introduction

1.1. Background of the study

1.1.1. Multilevel modeling
It is not always possible to obtain data where the observations are independent of each other.
The reason for this dependency might be some inherent clusters within the data. Many types of
data, including observational data collected in the human and biological sciences have a hierarch-
ical, nested, or clustered structure. For example, animal and human studies of inheritance deal
with a natural hierarchy where offspring are grouped within families, corporations are nested
within nations, students are grouped within schools in education studies etc. There should be at
least two levels of data within the multilevel structure and this study is based upon the two-level
multilevel structure.

Even though there are several methods available to deal with variability between clusters of
multilevel hierarchies such as multilevel modeling, replicated sampling techniques, sandwich esti-
mation of standard errors and generalized estimating equations, multilevel modeling (MLM) is
considered under this study. The category of multilevel models would be decided based on the
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type of data structure considered, distribution of the response variable and the variance structure
(Rasbash, Steele, et al. 2017). Since a normally distributed response variable and a two-level multi-
level structure are considered in this research, considering the variance structure, “two-level vari-
ance components model” is used for this study, which measures the proportion of total variability
that is between clusters.

1.2. Bayesian Markov chain Monte Carlo (MCMC) methods

There are numerous strategies for estimating the parameters in multilevel models. Hox (2010)
suggested several estimation methods such as maximum likelihood method, generalized least
squares method, generalized estimating equations, Bayesian methods and Bootstrapping.

However, Bayesian Markov Chain Monte Carlo (MCMC) methods are selected for estimation
of parameters in two-level variance components model considered in this study. MCMC methods
are simulation-based procedures so that rather than simply producing point estimates the meth-
ods are executed for many iterations and at each iteration an estimate for each unknown param-
eter is produced (Browne, Charlton and Rasbash 2017). Two MCMC methods considered
are namely;

1. Gibbs sampling
2. Metropolis-Hastings (MH) sampling

Recently, Pinto, I. V., and Sooriyarachchi, M. R. (2019) suggested the necessity of Bayesian
MCMC methods in multilevel scenarios. It was the primary force which motivated the idea of
considering comparision of MCMC methods in a multilevel scenario. As the preliminary initiative
of this comparison in multilevel structure a two level model where the response is normally dis-
tributed is taken under consideration. According to, Browne, Charlton and Rasbash (2015), Gibbs
sampling is available only for normal responses in MLwiN 2.19, the Statistical Package used for
this research. Hence normal response multivariate modeling is considered in this study.

1.3. Objectives of the study

As selecting and tuning sampling is needed, the suitability of MCMC algorithms for a given prob-
lem remains challenging and a comprehensive comparison of different methods is so far not
available. Thus the primary objective of this study is to compare the two main MCMC methods
that are Gibbs and MH for a multilevel hierarchy, using simulation studies. Other than the main
objectives, this study focuses on secondary objectives too. These secondary objectives are based
on examining a real life dataset:

� To apply and verify the comparison of MCMC methods to a real life application.
� To describe about the posterior distribution of each MCMC methods to a real life data.
� To determine the effect of sample size on the two MCMC methods and compare the perform-

ance of small samples on each method.

2. Literature review

It is important to consider the hierarchical structure of individuals in groups when modeling
such data because these data violate a crucial assumption of independence of observations that is
widely used in statistical techniques. Goldstein (2011) improves the advantages of utilizing a stat-
istical model which can demonstrate this clustered structure. Performing an analysis without
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considering the existence of hierarchical structures would create technical problems, which may
result in misleading conclusions. Rasbash, Steele, Browne and Goldstein (2009) proved these
problems by carrying out analysis without considering the clustering for a pupil level analysis
with no school terms, which caused standard errors of regression coefficients to be
underestimated.

Jackson (1991), Guo and Zhao (2000), Rasbash, Steele, Browne and Goldstein (2017) and
Snijders and Bosker (2012) are a few of the pioneer studies in multilevel data analysis in different
fields of research. Moreover, Raudenbush and Bryk (2002) stated that, to manage the risky cir-
cumstances emerging from multilevel data, multilevel modeling has been developed to manage
nested structures and Huang (2016) recommends multilevel modeling as a powerful and flexible
approach to handle multilevel data. A clear overview of the logic and statistical theory behind
multilevel models can be seen in Steenbergen and Jones (2002).

2.1. Methods of estimation

2.1.1. Description
Estimation of parameters in multilevel models is a fundamental step in statistical modeling thus
this needs a more significant level of consideration. There are numerous estimation methods
available for multilevel modeling such as Maximum Likelihood (ML), generalized least squares
(GLS), Generalized estimating equations (GEE), Quasi Likelihood and Bayesian MCMC methods.

The usual method used to estimate both the regression coefficients and variance components
is the ML method, because according to Hox (2010), it can yield the estimates of parameters
which are both asymptotically efficient and consistent. However, ML estimation is not computa-
tionally feasible in multilevel models with discrete response variable. Hence, according to
Goldstein (1999) quasi likelihood estimation methods are used in MLwiN in the case of multilevel
data with discrete response variables.

GLS methods could be used for multilevel models for continuous responses, which is based on
iterative processes recognized as iterative generalized least squares method (IGLS). However,
Restricted Iterative Generalized Least Squares (RIGLS) method was established, in order to
improve the results obtaining from IGLS. As stated by Rasbash et al. (2017), RIGLS is capable of
producing more reliable estimates than IGLS when dealing with biased responses.

Another method which could be used to estimate the parameters in multilevel models with
unknown correlation between outcomes is Generalized Estimating Equations (GEE) method. GEE
was developed by Liang and Zeger (1986) for estimation purposes which are defined as an exten-
sion of Quasi-likelihood approach for repeated measures. Coelhoa, Infante, and Santos (2013)
stated that, “For such cases (dependent data), the use of Generalized Estimating Equations (GEE)
might be a valid alternative approach, as this modeling technique calculates a working correlation
matrix that approximates the true correlation of the observations (Wang and Carey, 2003). A
main advantage of GEE is that it comes up with a consistent estimate for the parameters even
when the correlation matrix is not correctly specified.

2.1.2. Markov chain Monte Carlo (MCMC) methods
Bayesian MCMC methods are simulation based estimation procedures that will be compared for
the multilevel scenario in this study. This section investigates the previous developments related
to MCMC methods on which the foundation to this study is built.

Bayesian models for multilevel data using MCMC methods for Bayesian inference require
numerical integration. These methods are designed specifically for hierarchical models although
they can be adapted to fit other models (Browne, Charlton and Rasbash 2015). According to
Goldstein, H. (2011), MCMC methods incorporate prior distribution assumptions and based
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upon successively sampling from posterior distributions of the model parameters, yield a ‘chain’
which can then be used for constructing point and interval estimates of parameters. As stated by
Geyer (1992), MCMC is a general method for the simulation of stochastic processes having prob-
ability densities known up to a constant of proportionality. Hence it may eventually have applica-
tions in every area of the statistic. The two most common procedures of MCMC methods in use
are ‘Gibbs sampling’ and ‘Metropolis-Hastings sampling’. Liu, Nordman, and Meeker (2014) men-
tioned about the introduction of both those methods in detail.

MLwiN (version 2.19) is used in this study, which is a specialized software and can be used
for multilevel modeling. As mentioned in Rasbash et al. (2012), there are two families of simula-
tion based estimation procedures available in MLwiN, which are MCMC sampling and bootstrap-
ping. Bayesian MCMC methods such as Gibbs and MH are alternative to likelihood based
estimation methods. Bayesian analyses depend on sampling based approximations to the distribu-
tions of interest via Markov chain Monte Carlo methods (Browne and Draper 2006). These
MCMC methods can be implemented in MLwiN. The Bootstrap method could be used instead of
MCMC methods for following reasons; explicitly for improving the accuracy of inferences about
parameter values and correcting bias in the parameter estimates (Rasbash, Steele, Browne and
Goldstein 2012). Goldstein (2011) reveals complete detail on bootstrap approach for multilevel
generalized linear models.

2.2. Accuracy diagnostics

Any fitted model should be evaluated and confirmed on its performance before making inferences
from the developed model. This is fundamentally to check if the predicted values from the fitted
model provide values close to the observed data. This is alluded to as ‘goodness of fit’ (Hosmer
et al. 2013).

The two main statistics which are usually used to check the GOF in one-level binary response
models are deviance (likelihood ratio) and Pearson chi-square statistic. Hosmer and Lemeshow
(1980) introduced a GOF test for single level logistic models that is most popular test used in
these cases. However, Hosmer-Lemeshow test was modified by Lipsitz et al. (1996) where indica-
tor variables were included to represent the deciles of risk. Lipstiz et al. (1996) introduced an
extension for ordinal response models, while Fagerland et al. (2008) submitted a GOF test for
multinomial response models. Perera et al. (2016) extended the GOF test for Multilevel Binary
data based on the single level approaches mentioned above.

All the methods recommended in the above paragraph are not applicable to assess the GOF of
normal response multilevel models with the application of MCMC methods. Therefore, there is a
very limited amount of literature relevant to this field. According to Vivekananda Roy (2019),
MCMC diagnostic tools are needed for deciding convergence of Markov chains from the statio-
narity. Also, although in general the longer the chain is run the better the Monte Carlo estimates
it produces, in practice, it is desirable to use some stopping rules for prudent use of resources.

Monte Carlo Standard Error (MCSE) is an indicator of how much error has occurred in the
estimates, usually regarding the expectation of posterior samples, from MCMC algorithms. MCSE
is approximately a standard deviation throughout the expectation of the posterior samples, caused
by uncertainty related with utilizing MCMC algorithms in general. Gelman et al. (2004) argued
that MCSE is generally unimportant when the goal of inference is theta rather than expectation
of posterior samples. The plot of estimated MCSE of the posterior estimate of the mean against
the number of iterations could be attained from MCMC diagnostics in the MLwiN environment.
According to Flegal, Haran, and Jones (2008), MCSE provides two desirable properties:

i. It gives useful information about the quality of the subsequent estimation and inference.
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ii. it provides a theoretically justified, yet easily implemented, approach for determining appro-
priate stopping rules for their MCMC runs.

The effective sample size (ESS) provides estimates for the number of independent samples pre-
sented in the correlated MCMC chain. ESS is widely used in sample-based simulation methods
for assessing the quality of a Monte Carlo approximation of a given distribution and of related
integrals (Elvira, Martino and Christian 2018). According to Vehtari, Gelman, Simpson,
Carpenter and B€urkner (2021), the ESS of a quantity of interest captures how many independent
draws contain the same amount of information as the dependent sample obtained by the MCMC
algorithm. Clearly, the higher the ESS the better.

There are two contrasting accuracy diagnostics available in MLwiN. Raftery and Lewis (1992)
propose a method for calculating an appropriate burn-in. They also discuss choosing a run-length
so that the resulting probability estimate lies within a pre-specified interval which is called as
“Raftery-Lewis diagnostic”. According to Browne, Charlton, and Rasbash (2014), the statistic
“Nhat” in Raftery-Lewis diagnostic is used to estimate the length of the Markov chain required to
estimate a particular quantile to a given accuracy. In MLwiN the diagnostic is calculated for the
two quantiles (the defaults are the 2.5% and 97.5% quantiles) that will form a central interval esti-
mate. The Brooks-Draper diagnostic is a diagnostic based on the mean of the distribution. It is
used to estimate the length of the Markov chain required to produce a mean estimate to k signifi-
cant figures with a given accuracy Browne, Charlton, and Rasbash (2014).

In 1998, William Browne applied MCMC methods to multilevel models. The comparison of
Bayesian MCMC method’s performance is conducted through extensive simulations and an appli-
cation to a real-life scenario in our study. However, Browne (1998) performed this task through
three main steps which are; Fitting of multilevel models and investigation of maximum likelihood
methods, deriving MCMC methods for those models and finally comparing the MCMC methods
with the maximum likelihood method. While a two level multilevel model with normally distrib-
uted response is considered in this study, Browne (1998) considered N Level Gaussian models,
Binary response multilevel logistic regression models and Gaussian models with complex vari-
ation at level 1. Moreover, Standard Errors of point estimates, 95% Confidence Intervals of
Estimates and Accuracy Diagnostics (ESS and MCSE) are used to compare the performance of
Gibbs and MH methods in this study. However, estimate bias and coverage properties were used
by Brown (1998) to compare the MCMC methods with maximum likelihood methods.

2.3. Small samples

Hox, van de Schoot, and Matthijsse (2012), Kadane (2015), and McNeish and Stapleton (2016)
have discussed the advantage of MCMC Bayesian methods over frequentist methods in the use of
multilevel models for small samples. Therefore, it is of interest to validate their claim and exam-
ine which of Gibbs/MH, MCMC methods perform better for small samples.

3. Methodology

The simulation study and application to the real world dataset follow to analyze the performance
as well as the applicability of the two main Bayesian MCMC methods; Gibbs sampling and
MH method.

3.1 Simulation study

Performance of the MCMC methods such as Gibbs and MH are determined through the simula-
tion study, where simulations have been developed by a varying number of clusters, observations
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within each cluster, ICC values, burn-in length, MC length, prior distributions and acceptance
rate. Two-level multilevel hierarchy is considered when generating the simulations for determin-
ing the performance of suggested MCMC methods. A dataset is generated under several specified
conditions depending on properties considered in each scenario of the two-level hierarchy to
guarantee that both MCMC methods are carried out on the same dataset. Macros in MLwiN ver-
sion 2.19 are used to generate these datasets, where 1 is set as a seed value on each simulation
scenario. The use of the seed value can confirm that running the same model with the same start-
ing values and seed on a different machine will give the same answers (Browne, Charlton, and
Rasbash 2015).

3.1.1 The fitted model in simulations
The two-level random intercept model is fitted with a single predictor (explanatory) variable in
the simulations. As mentioned earlier, the normal response is considered in simulations, corre-
sponding to the two-level multilevel model. Archer et al. (2007) mentioned that the explanatory
variable can be generated from the Bernoulli distribution, normal distribution, and uniform dis-
tribution. But in this study, the single explanatory variable xij in the model is simulated from the
normal distribution which was suggested by Perera et al. (2016).

The fitted model is

yij ¼ b0j þ b1 xij þ eij (1)

Where, b0j¼ b0 þ uj
i ¼ 1, 2, :::, nj and j ¼ 1, 2, :::, k [k is the number of clusters]
The model stated above in (Archer et al. 2007) consists of both fixed and random components.

b1 is a fixed coefficient, b0 is a fixed component and a random and uj is a random component
and are included into the intercept term b0j, where the term uj is exclusively used to indicate
the random intercept. The random components, the error term in the Normal model eij �
Nð0, r2eÞ and the random component in the intercept uj � N 0, r2u

� �
follow the following

distributions.
The model (Archer et al. 2007) is fitted for several combinations based on various conditions

and then GOF and complexity of the models are evaluated under those conditions by utilizing
the Deviance Information Criteria (DIC) values obtained from MLwiN.

3.1.2. Factors considered for simulations
The sample size of the model relies upon the number of clusters available in the model and the
number of individuals in each designated cluster. Four scenarios for sample sizes are chosen as
indicated by the rules determined by Maas and Hox (2005), Kreft and de Leeuw (1998) and
Perera et al. (2016). Details of the selections of cluster sizes and the number of clusters for simu-
lations are clearly provided in the following Table 1.

According to the values set out by Perera et al. (2016) for the standard deviation of level 2
residuals, three scenarios for the standard deviation are selected in this simulation study. Those
different values of standard deviation of level 2 residuals allow to vary the intra cluster correlation
(ICC) according to the equation, ICC ¼ r2between

r2betweenþ r2within
, are shown in Table 2.

Table 1. Details for clusters.

Scenario Cluster size (observations within a cluster) Number of clusters

1 30 15
2 50 15
3 30 60
4 50 60
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3.1.3. Incorporating factors related to MCMC algorithms
Five hundred (500) is the default value for burn-in length in MLwiN, Hence, for the comparative
purpose, the values were selected for burn-in length such that those values are less than and
greater than the default value of burn-in length. Likewise considering chain length, 5000 is the
default value available for chain length in MLwiN, Hence, for the comparative purpose, the values
were selected for chain length such that those values are less than and greater than the default
value of chain length. These specifications of values result in 9 combinations of burn-in length
and chain length to be used in the scenario of simulations. Above mentioned details of the selec-
tions are clearly summarized in the following Table 3.

According to Goldstein (2011), diffused priors are chosen for this study. Two distributions are
selected for diffused priors based on the guidelines suggested by Browne (2015).

Considering acceptance rate, 50% is the default value available for acceptance rate in MLwiN,
and Browne (2015) suggested that rates between 30% and 70% provide a useful compromise
between a proposal variance that is too large and a variance that is too small through the litera-
ture. Thus, considering these aspects, three combinations of acceptance rate values are selected.
Above mentioned details of the selections are clearly summarized in the following Table 4.

A dataset is simulated using macros in the MLwiN software for each of the scenarios which
does not include the factors related to MCMC algorithms, hence all together 12 datasets are
simulated. Then specific values for the MCMC factors listed under Table 5 are assigned when
applying the Gibbs and MH methods separately. This process yields a total of 648 combinations
in the simulation study. Thus, the combinations resulting from the choices made above are sum-
marized in Table 5.

4. Results and conclusions

When applying the different specifications for simulations, the corresponding DIC values
obtained from MLwiN output are noted for each combination to evaluate the GOF of the model.
By looking at the DIC values of all 648 combinations, it has been found that the 322nd combin-
ation contains the minimum DIC value of 2705.82 for both Gibbs and MH methods. Thus, this
combination is selected as best based on the suggestion of Francois and Laval (2018). Results
obtained from MCMC methods in simulation and comparison of both MCMC methods will be
carried out for this 322nd combination. Table 6 summarize the details of the selected best
combination.

MCMC diagnostic outputs in the MLwiN environment are obtained for fixed and random
effects under MH and Gibbs methods which can be used to compare the considered MCMC
methods based on detailed diagnostic information about unknown parameters in the model.

Point and interval estimates of unknown parameters can be used to compare the estimation
algorithms based on the standard error of the point estimates and length of the confidence inter-
val. Table 7 summarizes the point estimates using the standard errors as well as the 95% interval
estimates coming from Gibbs and MH fittings.

It could be seen that; Considering point estimates of fixed effects, the MH method yields the
estimates of parameters with the smallest Standard errors compared to Gibbs, Considering point
estimates of random effects, the MH method does better for estimation of between cluster vari-
ance (r2u). But the standard error coming from MH looks slightly higher (0.003) than that from

Table 2. Standard deviation of Level 2 residuals.

Scenario Standard deviation (ruÞ Variance (r2u)

1 1.0 1.0
2 1.5 2.25
3 2.0 4.0
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Gibbs in the estimation of r2e : The confidence intervals that are as narrow as possible can be con-
cluded as better, thus MH method seems to be better than Gibbs as it yields the narrowest 95%
interval estimates for both fixed and random effects in the two-level random intercept model.

Table 3. Details of burn-in length and chain length.

Scenario Burn-in length Chain length

1 300 3000
2 500 3000
3 700 3000
4 300 5000
5 500 5000
6 700 5000
7 300 7000
8 500 7000
9 700 7000

Table 4. Details of acceptance rates and priors.

Scenario Acceptance rate Priors

1 30% Gamma
2 50% Gamma
3 70% Gamma
4 30% Uniform
5 50% Uniform
6 70% Uniform

Table 5. Different combinations.

Factors considered Selections Combinations

Standard deviation of the random component (ru) 1, 1.5, 2 3
Number of clusters (Level 2) 15, 60 2
Cluster size (Level 1) 30, 50 2
Total combinations except factors related to MCMC algorithms 3� 2 � 2¼ 12
Burn-in length 300, 500, 700 3
Chain length 3000, 5000, 7000 3
Priors Gamma, Uniform 2
Acceptance rate 30%, 50%, 70% 3
Total combinations 3� 2 � 2� 3 � 3� 2 � 3¼ 648

Table 6. Details of the selected best combination.

Factors considered Values

Standard deviation of the random component (ru) 1.5
Number of clusters (Level 2) 15
Cluster size (Level 1) 30
Burn-in length 700
Chain length 3000
Priors Gamma
Acceptance rate 70%

Table 7. Point estimates, standard errors and 95% confidence intervals of estimates.

Parameters

Gibbs MH

Point estimates with SE 95% interval estimates Point estimates with SE 95% interval estimates

Fixed effects
b0 �0.161 (0.079) �0.32,-0.053 �0.079 (0.037) �0.122,0.005
b1 0.444 (0.425) �0.428,1.278 0.458 (0.419) �0.324,1.281
Random effects
r2u 0.365 (0.175) 0.147,0.793 0.332 (0.168) 0.127,0.765
r2e 78.754 (5.523) 69.15,91.10 79.193 (5.529) 69.76,91.20
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It is good to see that the best combination (322) is for the smallest sample. That is for the
smallest number of clusters having the smallest cluster size. This indicates that the two MCMC
methods perform better for small samples rather than large samples. Of the two methods the MH
performs better than the Gibbs method with all parameters except r2e having smaller standard
errors and narrower confidence intervals for the former method compared to the latter method.

Table 8 summarizes the accuracy diagnostics applicable for MCMC algorithms such as ESS
and MCSE under both considered procedures, where Brooks-Draper diagnostic is not considered
for the comparison as it was recognized that, this diagnostic isn’t satisfied for all model parame-
ters when having chain length equal to 3000. The higher value for ESS indicates the better fit as
it estimates the number of independent samples presented in the correlated MCMC chain. MCSE
can be achieved by dividing the standard deviation of the Markov chain values by square root of
number of iterations (i.e., MCSE¼ SD/�n), so MCSE is an indicator of the accuracy of posterior
mean estimate in Bayesian approaches.

It could be seen that in the estimation of b0, there is no huge difference in ESS between both
MCMC methods. So considering MCSE, MH does better than Gibbs as it provides the minimum
MCSE in estimating the intercept parameter. In the estimation of b1, Gibbs does better than MH
based on the ESS and MCSE values. In the estimation of r2u, MCSE values are equal for both
MCMC methods. So considering ESS, Gibbs does better than MH as it is providing maximum
ESS. In the estimation of r2e , there is no huge difference in MCSE between both MCMC meth-
ods. So considering ESS, MH does better than Gibbs as it is providing maximum ESS in the esti-
mation of r2e :

The typical goal is to attain a large ESS. According to Drummond et al. (2006), it would be
better if the value of ESS is near to an arbitrary cutoff of 200. This is achieved for all the parame-
ters of this study except b0: Since ESS denotes the number of independent samples presented in
the correlated MCMC chain, there might be a chance to get a small number of independent sam-
ples occurring in the correlated MCMC chain.

MCMC diagnostics output for b0 under the Gibbs and MH have also been considered for
more clarification which are given in Figures 1 and 2. It is noticed that the generated values for
b0 seem somewhat auto correlated in the plot of parameter traces for b0: This means each value
of the Markov chain is highly correlated with the previous value. Moreover, the plot of ACF indi-
cates that the generated chain consists of dependently distributed data. These patterns were not
observed for the other parameters; hence, it might be the reason for getting small values of ESS
for b0:

4.1. Exploring the effect of the seed

In order to observe the subtle difference between MH and Gibbs the experiment was repeated
over multiple seeds. Tables 7 and 8 are repeated over Tables 9 and 10 with different seeds.

Table 9 indicates that considering the standard error of the point estimates and the width of
the interval estimates, overall conclusions are similar for different seeds used, that is MH shows a

Table 8. Details of the accuracy diagnostics.

Parameters

Gibbs MH

ESS MCSE ESS MCSE

Fixed effects
b0 4 0.038 5 0.020
b1 2973 0.008 489 0.02
Random effects
r2u 2070 0.004 1178 0.004
r2e 324 0.285 366 0.304
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slight superiority over Gibbs but nothing significant. However, from Table 10 considering accur-
acy diagnostics there are slight differences depending on the seeds.

4.2. Behavior of considered factors in simulations

There were several parameters such as standard deviation of random component, number of clus-
ters, cluster size, burn-in length, chain length, priors and acceptance rate considered to designate
the simulations in this study. Tables of standard errors (SE) of estimates against the specific com-
binations obtained from both Gibbs and MH algorithms are used to identify which factors are
affecting the MCMC methods.

4.3. Practical application

Application of Gibbs and MH methods to a real-life scenario that consists of the multilevel hier-
archy is important to verify the possibility of these algorithms in practical situations and also to
compare the parameter estimates given by each method of estimation.

The dataset for this application was collected from the World Statistics Pocketbook published
by the United Nations (UN) in 2005. Two hundred and nine countries which were available

Figure 1. MCMC diagnostics for b0 under the Gibbs Method

Figure 2. MCMC diagnostics for b0 under the MH Method
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under the UN as of 30th November 2004 are available in this dataset. The response variable in
the dataset is the ‘weighted average life expectancy at birth 2000-2005’ which is a continuous vari-
able. Weighted average life expectancy at birth (WLE) is a statistical measure of the average age
at which an individual is expected to die. Countries available in the dataset are nested within sev-
eral regions. All the explanatory variables except ‘region’ have been measured at the lowest level
of the hierarchy. Hence, the dataset allows fitting the two-level multilevel model by considering
the country at level-1 and the region at level-2.

The dataset consists of 209 UN countries with huge amount (i.e., 1424) of missing values.
Initially the dataset consists of 50 explanatory variables. According to the earlier study which was
carried out for this same dataset by Pathirathne and Sooriyarachchi (2019), 50 explanatory varia-
bles were reduced to 31 due to the removal of variables having a high proportion of missing val-
ues and several countries also have been omitted from the dataset due to those counties having

Table 10. Details of the accuracy diagnostics.Where mentioned the method which performed well for each parameter

Seed 5 10 Parameters Gibbs MH
ESS MCSE ESS MCSE

Fixed effects
b0 4 0.038 5 0.020 MH
b1 2973 0.008 489 0.02 Gibbs

Random effects
r2u 2070 0.004 1178 0.004 Gibbs
r2e 324 0.285 366 0.304 MH
b0 9 0.082 14 0.030 MH

Seed 5 1 Parameters Gibbs MH
ESS MCSE ESS MCSE

Fixed effects
b1 2780 0.008 301 0.023 Gibbs

Random effects
r2u 1696 0.006 2440 0.005 MH
r2e 453 0.220 525 0.223 MH
b0 9 0.069 4 0.036 MH

Seed 5 1000 Parameters Gibbs MH
ESS MCSE ESS MCSE

Fixed effects
b1 2533 0.005 537 0.013 Gibbs

Random effects
r2u 2196 0.004 1932 0.004 Gibbs
r2e 503 0.119 394 0.131 Gibbs
b0 15 0.034 9 0.016 MH

Seed 5 1000 Parameters Gibbs MH
ESS MCSE ESS MCSE

Fixed effects
b1 2532 0.008 616 0.015 Gibbs

Random effects
r2u 2177 0.003 1564 0.003 Gibbs
r2e 524 0.200 404 0.221 Gibbs
b0 7 0.072 4 0.034 MH

Seed 5 50 Parameters Gibbs MH
ESS MCSE ESS MCSE

Fixed effects
b1 2309 0.011 410 0.029 Gibbs

Random effects
r2u 2087 0.009 2498 0.008 MH
r2e 575 0.425 412 0.500 Gibbs
b0 3 0.109 3 0.013 MH

Seed 5 2000 Parameters Gibbs MH
ESS MCSE ESS MCSE

Fixed effects
b1 2894 0.009 479 0.021 Gibbs

Random effects
r2u 2911 0.006 2482 0.006 Gibbs
r2e 429 0.320 416 0.331 Gibbs
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missing values for the important variables selected. Hence, the dataset resulted in only 115 coun-
ties and 31 explanatory variables for further analysis. A region that had only one observation and
the country correspond to the irrelevant region was removed. In addition, the categories of
regions related to ‘Oceania’ which had only a few observations were merged into one region to
elude any opportunities of non-convergence with minor cluster sizes. Therefore, the dataset
resulted with only 14 regions and 114 countries.

Regularization techniques such as the Lasso and Elastic Net (Bonaccorso 2017) were applied to
the dataset to identify the important predictors by handling the multicollinearity, then the 18 var-
iables selected from the Lasso method was considered for further analysis based on the smaller
MSE calculated for the test set. Then the suitable two-level random intercept model was fitted
and the backward selection was applied to find out the most suitable model which consists of sig-
nificant variables only by using the Wald statistic at 5% level of significance. The model selection
process was verified by checking the AIC values and the Test MSEs at each stage of backward
elimination. Before applying the MCMC estimation methods to select the best model yielded
from backward elimination, 54 combinations were designated by varying the burn-in length,
chain length, acceptance rate and priors to find out the best combination of choices for the fac-
tors related to MCMC methods.

The results obtained from Gibbs and MH methods for the model fitted for best combination
selected based on smaller DIC out of 54 combinations have been used to compare those methods.
Summary statistics of the posterior distribution of estimates for each unknown parameter indicat-
ing that narrower confidence intervals arose for MH in estimating fixed effects, however, Gibbs
has smaller SE of point estimates. Gibbs does better than MH in estimating the random effects,
as the smaller SE of point estimates and the narrower confidence interval occurred for Gibbs.
Considering the accuracy diagnostics results, Since ESS’s were so much higher for Gibbs com-
pared to MH, it could be decided that, Gibbs has the superiority over MH in estimating both
random and fixed effects of the fitted model, which could be verified by smaller MCSE values for
Gibbs. However, the picture is not much clearer for the practical applications as a simulation
study, because it’s only for one specific selected dataset.

5. Discussion

5.1. Important Conclusions

Theory, circumstantial situation and the logic behind the illustration of the Gibbs and MH algo-
rithms are easily understood. The main idea of these Bayesian MCMC methods is to generate a
chain of estimates from the joint posterior distribution of parameters in the model through an
iterative process, which can be used to construct a useful statistical summary for a sin-
gle parameter.

Simulation results indicate that only the parameters such as a number of clusters, priors and
acceptance rates are affecting the performance of the MCMC methods.

� SE values of estimates showed a clear increment with the decrease in number of clusters for
both MCMC methods

� 50% acceptance rate yields the better estimation through the MH algorithm.
� Overall Gamma priors give better estimation than Uniform priors for most of the

model parameters.
� The smallest sample size (smaller number of clusters with the smaller sample size) yields the

best results.
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The entire simulation results indicate that there is no difference in the performance of both
MCMC methods in estimating slope parameter and individual level variance (r2e ) but MH has the
superiority over Gibbs in estimating the intercept parameter. Moreover, following conclusions on
MCMC methods could be derived for the best combination;

� Generally, MH has the superiority over Gibbs in estimating the two-level random intercept
model parameters based on the summary statistics of the posterior distributions.

� MH performs better than Gibbs in estimating the individual level variance (r2
e ) and intercept

parameter, but Gibbs does better than MH in estimating the between cluster variance (r2
u)

and slope parameter of the two-level random intercept model based on accuracy diagnos-
tic statistics.

� MH does better than Gibbs for small samples.

Overall, it could be concluded to go with MH generally to estimate the model parameters in
the multilevel hierarchy, for small samples. However, for moderate to large samples there is no
significant difference between MH and Gibbs.

There is no complexity in applying the MCMC methods to a real-life scenario, however, the
performance of the MCMC methods can vary with the selected dataset.

5.2. Limitations

The study considers the multilevel model fitting using only two of the most common MCMC
methods in use. However, there are several estimation methods such as ML, GLS, GEE, Quasi
Likelihood and Bootstrapping is available for multilevel modeling. The study was established for
two-level random intercept models because of the simplicity. Gibbs sampling is available for nor-
mal responses only in the software MLwiN (version 2.19), which was used in this study. There
were a huge number of combinations in the simulation study. Thus, the tables with the whole
combination’s results were slightly unclear and the best combination was selected to compare the
two MCMC methods. The regularization techniques haven’t been applied in the presence of a
multilevel model in the practical application of this study. The dataset used in the real-world
application of this study consists of only a moderate numbers of observations.

5.3. Suggestions for further work

The following are a few suggestions for future researches associated with this field.

� The study could be improved with more than two levels in the hierarchy as well as the other
responses other than normal distribution such as binomial, ordinal etc.

� More variations of cluster sizes, number of clusters, burn-in length, chain length and accept-
ance rate could be considered in the simulation study.
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