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Abstract

Stroke is a leading cause of healthcare 

burden in the aging population with a 

rapidly rising prevalence worldwide. 

Ischaemic strokes account for 85% of the 

strokes. The key to recovery of brain 

functions following an ischaemic stroke 

depends on two arms: 1) restoration of 

lost or damaged neurones and, 2) 

survival of neurones that were not killed 

by the injury. Hence, the recovery could 

b e  h a s t e n e d  b y  p r o m o t i n g 

neuroregeneration and preventing 

neurodegeneration. During the last five 

decades,  animal models  showed 

promising results in the field of 

neuroregeneration, which was long 

believed to be impossible. Furthermore, 

animal studies with stroke lead to the 

discovery of the novel concepts of 

epigenetic inhibition in nerve growth, 

upregulation of apoptotic genes, 

neuroinflammation and metabolic 

dysregulation which contributed to 

neurodegeneration. However, it is 

debatable if these findings can be 

replicated in human brains, in order to 

develop potential therapeutic strategies. 
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Main Article

Stroke is defined as an acute brain insult 

due to a vascular event leading to 

permanent injury to neurones and 

functional compromise [1]. Strokes are 

caused by inadequate blood supply to the 

brain to meet its metabolic demands. 

They can be classified into two major sub 

groups based on the pathophysiology: 

ischaemic and haemorrhagic. Ischaemic 

strokes occur usually secondary to 

occlusion of a cerebral blood vessel [1]. 

Ischaemic strokes are by far the 

commonest type worldwide accounting 

for 85% of the strokes [1]. The Global 

Burden of Disease study concluded that 

ischaemic strokes account for 2 690 200 

deaths in the world in 2016 [2]. The 

incidence of stroke in Asia is 116 to 483 

per 100 000 per year [3].  

Mechanisms of recovery from ischaemic 

stroke

The key to recovery of function 

following a stroke depend on two arms: 

1) restoration of lost or damaged 

neurones and, 2.) survival of neurones 

that were killed by the injury. The 

mechanism of restoration of the lost or 

damaged neurones is by means of repair 

and regeneration. The repair of damaged 

long axons within the central nervous 

system is markedly limited, particularly 
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due to the active inhibition of axonal 

regrowth by the gl ial  cel ls  [4] . 

Conversely, the belief of inability of 

neurones to regenerate was challenged in 

recent studies. 

Neuroregeneration 

Altman in 1962 first described the 

neurogenesis in adult mammalian brain 

[5].  In 1998, Eriksson and colleagues 

found that the neurogenesis happens in 

the dentate gyrus of the adult human 

hippocampus [6]. Adult hippocampal 

neurogenesis declines with aging in 

rodents [7] and non-human primates [8]. 

There are striking differences of 

neurogenesis between humans and 

animals. Neuronal migration from 

subventricular zone to olfactory bulb 

along the rostral migratory system could 

only be demonstrated in rodent [9, 10] 

and non-human primate [11, 12] studies. 

Whereas, unique features like striatal 

neurogenesis was not demonstrated in 

animal studies [13, 14]. Likewise, there 

i s  conflic t ing evidence whether 

neurogenesis happens in the normal 

a d u l t  b r a i n s  [ 1 5 - 1 8 ] .  U s i n g 

immunofluorescence staining, Sorrells 

a n d  c o l l e a g u e s  c o n c l u d e d  t h a t 

neurogenesis in humans rapidly declines 

from 7 to 13 years of age and it is almost 

non-existent in the adult age [19]. 

Despite adapting a fairly similar 

methodology, Boldrini and colleagues 

found that the neurogenesis persists in 

adult human brain even until the eighth 

decade of life, even though the quiescent 

neural stem cell population, neural 

plasticity and angiogenesis declines with 

aging process [20]. The contrasting 

evidence by these two landmark studies 

proves that understanding of the 

mechanism of adult neurogenesis is far 

from clear.

S i m i l a r l y ,  t h e  m e c h a n i s m  o f 

neuroregeneration following ischaemic 

stroke is poorly understood. A few 

studies investigated the patterns of 

neuroregeneration following a stroke. 

Radiocarbon-14 dating studies failed to 

show neuroregeneration in forebrain 

fo l lowing  s t roke  [21] ,  whereas 

i m m u n o c y t o l o g i c a l  s t u d i e s 

demonstrated a possible neurogenesis 

with migratory phenotype [22-24]. Few 

in vitro and in vivo studies elicited that 

the neurogenesis is co-regulated with 

angiogenesis [25-28]. An age associated 

decline in both angiogenesis and 

neuronal plasticity was found in a human 

study [20]. However, correlations of 

neuroregeneration and angiogenesis in 

humans are not reported. 

Neurodegeneration

Ischaemic damage to the brain initiates a 

cascade of events which leads to death of 

partially injured neurones leading to 

neurodegeneration. Transcriptomic 

analyses of ischaemic penumbra of rats 

p rov ided  ins igh t  in to  t empora l 

relationship of differential expression of 

genes responsible for metabolic, 

inflammatory and immunological 

p a t h w a y s  i n  p o s t - i s c h a e m i c 

neurodegeneration [29]. Subsequent 

animal studies with stroke lead to the 

discovery of the novel concepts of 

epigenetic inhibition of axonal sprouting 

[30], extensive upregulation of apoptotic 

genes [29], neuroinflammation [31] and 

metabolic dysregulation [32]. However, 

genes which prevent inflammation [33, 
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34] and oxidative stress [35] after 

ischaemic stroke were also discovered. 

Nevertheless, controversial results 

against the apoptosis and gene fusion 

following stroke were found in a human 

study [21]. 

Conclusions

Nerve regeneration and degeneration 

may play a critical role in the recovery of 

stroke. However, we cannot ascribe the 

results of neuroregeneration and 

neurodegeneration found in animal 

models directly to humans. Human 

studies are scarce due to lack of access to 

tissues and technical problems of tissue 

handling and sequencing. Therefore, 

there are ambiguities and gaps in 

knowledge of the dynamic balance 

between protective and damaging 

factors leading to post-ischaemic 

n e u r o r e g e n e r a t i o n  a n d 

neurodegeneration in humans.
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