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Abstract
Case-control studies, that investigate combinations of circumstances causing many diseases is largely in practice in many real world situations. Matching in case-control studies adjust for the effects of confounding variables and increase the efficiency of the study. Several authors have discussed the application of theories to 1:1 and 1:many matched case-control studies. In general, many:many matched case-control studies are useful as they eliminate the problem of disposing of available data due to loss of cases/controls. Design and analysis of many:many matched case-control studies is a topic of interest among epidemiologists. This paper primarily focuses on designing a many:many matched case-control study using the data of Ille-et-Vilaine case-control study in France and illustrating the way in which to analyze such a study.
The data base for the study was the Ille-et-Vilaine study. Chi-square tests confirmed that age is a risk factor for esophageal cancer and is associated with exposures tobacco and alcohol. Thus, age was chosen as the matching variable for the analysis as it is a confounder. Nine strata were formed using age. All the cases in each stratum were chosen for the analysis and a random sample of controls from each stratum was selected for the analysis. This approach resulted in a many:many case-control study.
A conditional logistic model was fitted to the data to find out the factors effecting esophageal cancer. It was found out that wine, cider, beer and tobacco affect the risk of getting esophageal cancer. Every increase in one gram of wine would increase the risk of getting esophageal cancer by 1.035 times. The risk of getting esophageal cancer is 1.024 times higher for every increase in one gram of beer. Every increase in one gram of cider would increase the risk of getting esophageal cancer by 1.028 times and the risk of getting esophageal cancer is 1.029 times higher when one gram of tobacco is increased.
This study illustrates the method of designing and analyzing many-to-many matched case-control studies. Both univariate analysis and model fitting is explained by way of the example used. In addition diagnostics for checking the goodness of fit of the model are proposed.
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1. Introduction

Epidemiology is the study of patterns of disease occurrence and the factors that influence such patterns.[1] Epidemiological studies investigate the cause of a disease, and many diseases are caused by a combination of circumstances. Case-control studies[2] compare individuals having a particular disease (cases) with the individuals who do not have the disease (controls). Matched case-control studies[1, 2, 3] take the effects of confounding variables into account at the design stage of the study. In the most general situation, one diseased person (or a group of persons) included in the study as a case(s) is matched to one or more disease-free persons who will be included as controls. Cases and controls are matched on the basis of confounding variables. Matching enables to control the effects of the confounding variables and also increases the efficiency of the study. Matching is generally accomplished on the basis of particular confounding variables such as, age, ethnic group, and so on. Matching eliminates the assumption of a specific functional form needed for regression adjustment and provides the best means of investigating a specific hypothesis, allowing one to conduct a relatively small study. 
In practice, matched case-control studies are widely used to investigate the effects of combinational circumstances on the cause of a disease as this leads to a better understanding. Until recently, large multivariate studies of disease incidence have been analyzed as a series of bivariate tables. This approach can lead to over-interpretation of individual findings due to the fact that a multiplicity of tables cannot adequately represent complex interactions between the many variables under study. To help alleviate these problems, logistic regression models were introduced by Breshlow and Day[4] for use in prospective and retrospective studies.

The conditional logistic regression model takes account of the matching in the analysis of observed data in the process of estimating the parameters. Hosmer and Lemeshow[5] have explained the application of conditional logistic modeling for 1-1 and 1-M matched case-control studies. 
This paper explicates the application of conditional logistic regression modeling for many-many matched case-control studies[4, 6, 7]. The paper attempts to explore the theory,    emphasize the design and analysis aspects of matched case-control studies, and exemplify the methodologies using a real large scale data set.
The database for selecting the cases and controls for the many:many case control study, consisted of data from the Ille-et-Vilaine study of esophageal cancer[8]. This case-control study consists of 200 male cases of esophageal cancer and 778 population controls. The use of beer, cider, wine, aperitif, and digestive in grams per day have been identified as the use of alcohol. Tobacco amount in grams per day together with the age at diagnosis have also been collected in the study.
The Ille-et-Vilaine study was not a matched case-control study. Thus, for our purpose of illustration it was required to design a matched case-control study using the data of the original study. Age was found to be a confounding variable in the study and was used as the matching (stratum) variable. All cases in each stratum were chosen for the analysis where as a random sample of controls from each stratum was selected for the analysis.[9] Matching based on age and random selection of controls from each strata resulted in a many:many matched case-control study.   

The primary objective of this paper was to illustrate the designing and analysis of a many:many matched case-control study by way of an example. The paper also focuses on finding out factors effecting esophageal cancer. Woodward[1] discusses methods of calculating unadjusted odds ratios. These methods were used to calculate unadjusted odds ratios for the explanatory variables. Though these univariate estimates are not very reliable, the odds ratios provided an indication of what variables may affect esophageal cancer. In order to adjust each effect for other important effects, conditional logistic models were used, as the response variable was binary (case/ control). Delta-beta statistics were used as diagnostics for determining the goodnees of fit of the selected model. 
Section 2 describes the methods used in the study. Section 3 illustrates the application of the methods explained in section 2, to an example. Section 4 consists of a discussion of the study and the methods used. Annex 1 gives the important SAS programs used in this study.
2. Methods and Materials

Many : Many Matching[4] 

A major disadvantage with 1:1 matching is that, should the matched control be ‘lost’ then the corresponding case is inevitably also lost. This not only reduces accuracy in the final results, but also means that time and resources will have been wasted. The adoption of 1:many, with the fall-back of a 1:variable, protects against the problem. However in this scheme, should the case be lost, the corresponding matched controls will also be lost. To protect against this problem a many;many matched scheme is suggested.
Practical situations generally will have variable numbers of both cases and controls and this is the most general situation. 

Unadjusted Odds Ratios[1]
Suppose that 
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Where
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The estimated unadjusted odds ratio (exposure versus no exposure) is
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Where
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In equation (1) and equation (4) the summations are quadruple summations over 
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Conditional Logistic Regression[4, 6]
The method of maximum likelihood relies on large-sample asymptotic normality for the validity of estimates and especially of their standard errors. This approach may be inappropriate resulting in biased inferences, when the sample size is not large compared to the number of parameters. This situation typically arises when data are stratified and intercepts for each stratum is fitted so that the number of parameters is of the same order as the sample size. For example, in a 1:1 matched paired study with 
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 pairs and 
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 covariates, 
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 intercept parameters and 
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 slope parameters are estimated. Taking stratification into account by conditioning out the nuisance parameters gives consistent and asymptotically normal MLEs for the slope coefficients. Breslow and Day [1980] and Stokes, Davis, and Koch [2000] give more information on this method.
Conditional Likelihood
Consider the binary logistic model
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where any stratum specific parameters are absorbed into 
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 with corresponding dummy variable in 
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Where 
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 is the covariate vector, and 
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The full likelihood is
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. Unconditional likelihood inference is based on maximizing the above likelihood function.
To derive the conditional logistic, following Mehta and Patel (1995), the sufficient statistics 
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Let, 
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denote a vector of observable sufficient statistics.

The probability density function for 
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 can be created by summing over all binary sequences 
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In order to “condition out” the stratum parameters, the parameter vector 
[image: image41.wmf](

)

01

,

qqq

¢

¢¢

=

, where 
[image: image42.wmf]0

q

 is a 
[image: image43.wmf]0

p1

´

 vector of the nuisance parameter and 
[image: image44.wmf]1

q

 is the parameter vector for the remaining 
[image: image45.wmf]10

ppp

=-

 parameters of interest, is partitioned.

Similarly, 
[image: image46.wmf]X

 is partitioned into 
[image: image47.wmf]0

X

 and 
[image: image48.wmf]1

X

. 
[image: image49.wmf]T

 is partitioned into 
[image: image50.wmf]0

T

 and 
[image: image51.wmf]1

T

, and 
[image: image52.wmf]t

 is partitioned into 
[image: image53.wmf]0

t

 and 
[image: image54.wmf]1

t

. The nuisance parameters are removed by conditioning on their sufficient statistics to create the conditional likelihood.
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The 
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in equation (13) is a constant as the nuisance parameter has been factored out.
Conditional asymptotic inference is performed by maximizing the conditional likelihood. Howard[11] and Gail, Lubin and Rubinstein[12] suggest relatively fast methods for maximizing the conditional likelihood, when 
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 strata with stratum-specific intercepts 
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Calculation of Odds Ratios and Confidence Intervals

Consider the model;
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The odds ratio of the event of interest for an individual in the 
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stratum, with 
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explanatory variables relative to an individual with 
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 explanatory variables is;

 
[image: image72.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

h1h1

h1h1

h2h2

h2h2

h1

h2

h1h2

Pry1x

1Pry1x

ˆ

15

Pry1x

1Pry1x

expx

16

expx

expxx17

y

b

b

b

=

éù

-=

ëû

=

=

éù

-=

ëû

¢

=

¢

¢¢

=-

éù

ëû

L

L

L


The 
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Regression Diagnostics

Diagnostics are used to indicate observations that may have undue influence on the model fit, or which may be outliers. Further investigation should be performed before removing such an observation from the data set.

Storer and Crowley[13] have explained a method of augmenting the logistic regression model which provides an estimate of the ‘one-step” DFBETAS. The method also provides estimates of conditional stratum-specific predicted values, residuals, and leverages for each observation.
Augmented model is;
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The gradient and information matrix are;
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The algorithm of Gail[12] provides appropriate estimates of 
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DFBETA, computed from the information matrix is;
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The DFBETA are then standardized by the estimate of 
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 from the full data set to produce the estimate of standardized DFBETAS. A set of 
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 DFBETAS is produced for each observation 
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 in the data set by deleting that observation and computing the statistics.

The estimated residuals 
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Where 
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 is the number of events in the observation and 
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 is the number of trials.

The estimated leverage is;
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A rule of thumb is that, a leverage value may be suspected as large if it is greater than 
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is the number of independent parameters estimated and 
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 is the number of observations. If the leverage is greater than 
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 it is likely to be an influential value.
3. Example

Description
The data for the analysis is extracted from the Ille-et-Vilaine study of risk factors for esophageal cancer. This study, conducted in France is a case-control study of 200 male cases with esophageal cancer and 778 population controls. However in this study cases were not matched with controls. The original data set contained 9 variables of interest. Variable case describes whether the record is a case or a control. Age at diagnosis is denoted by variable age. Tobacco amount in grams per day is captured under the variable Tobacco. Variables Beer, Cider, Wine, Aperitif, and Digestive give the beer in grams per day, cider in grams per day, wine in grams per day, aperitif in grams per day, and digestive in grams per day respectively. A summary of the variables in the study is given in table 3.1.

Table 3.1 should come here

This data set is used as a database for selecting cases and controls for a many: many matched case-control study. The primary aim of the paper is to illustrate the theories behind the design and analysis of many:many matched case-control studies. A secondary aim is to find out the factors effecting esophageal cancer.

Design

The exposure variables measured in the study are tobacco and different types of alcohol. In order to design the matched case-control study it is important to identify the confounding variable(s). As age is the only other variable it is required to determine whether it is confounder. In order to show that the age is a confounder it is required to show that age is a risk factor for esophageal cancer and that it is associated with tobacco and/or alcohol. Table 3.2 indicates the way in which tobacco level, alcohol level and age have been grouped for the purpose of testing whether age is a confounder.
Table 3.2 should come here

According to the criteria explained earlier it was found that age is a confounding factor for both the exposure variables tobacco (at 20% level) and alcohol (at 1% level) and the test results are summarized in table 3.3.
Table 3.3 should come here

As age is a confounding variable it will be used as the matching (stratum) variable. Nine strata were formed for the analysis using the variable AgeGroup. Table 3.4 depicts the number of cases and controls in each stratum in the original Ille-et-Vilaine data set. All recorded cases within each stratum and a random selection of controls from each stratum of the original study were used for our study. This was done in order to illustrate the design stage of a many:many matched case control study. This ensures a many:many matching of cases and controls within each stratum.
Table 3.4 should come here

Unadjusted Odds Ratio
The methods described by Woodward[1] were used for calculating unadjusted odds ratios. These unadjusted odds ratios give a first clue in determining the factors effecting esophageal cancer. Table 3.5 gives the unadjusted odds ratios and respective confidence intervals for each exposure variable.
Table 3.5 should come here

Unadjusted odds ratios while indicating possible risk factors for esophageal cancer are not very reliable since each variable is not adjusted for other important variables. Brief conclusions obtained from table 3.5 are that other than aperitif all other alcohol types and tobacco seem to be risk factors for esophageal cancer.  
Model Fitting
Since the results of unadjusted methods are not very reliable, it was decided to use a conditional logistic model to visualize the effects of the factors after adjusting for other important factors. Unadjusted odds ratios clearly indicated that variables tobacco, cider and wine have effects on risk of getting esophageal cancer, thus it was required to consider these three variables for model fitting. Though one of the p-values suggested that beer has no effects the other suggested a strong relationship. When digestive is considered, for one level there is strong evidence of a relationship. Hence variables beer and digestive were considered for the model fitting. Also when aperitif is considered there is evidence at 20% level, suggesting a relationship with risk of getting esophageal cancer. Therefore aperitif was also taken for the model fitting.  
After deciding to consider all variables for the model fitting, it was found that the continuous form of the variables is more suitable than the categorical form. Both the continuous and categorical forms of all the variables were compared using likelihood ratio tests. Each test recommended the continuous form. In the fitting of the conditional logistic model the stepwise procedure[14] was used for selecting the most important set of variables. Models were compared based on the likelihood ratio test statistic.
The conditional logistic model proposed by the stepwise procedure is;
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 denote the increase in the log odds of esophageal cancer for one gram of wine, cider, beer and tobacco respectively. Wine, cider, beer and tobacco were identified as affecting the risk of getting esophageal cancer when adjusted for other important variables.
Goodness of Fit of the Model 

Once the model is chosen, before making inferences it is necessary to confirm that the selected model explicates the data adequately. Delt-beta 
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 Statistics were plotted against the leverages for each variable to observe the fit of the model and to examine the influential points. It is known that a high value for delta-beta indicates either a large residual or an influential value. Points with high delta beta and high leverage are influential observations with high residual. Points with high delta beta and low leverage are non-influential observation with large residuals. Low delta beta and high leverage values indicate influential points with small residual. Non-influential observations with small residual are the points with low leverage and low delta beta values. Figure 3.1 to figure 3.4 depict the resulting delta-beta versus leverage plots for the variables wine, cider, beer and tobacco respectively.
Figure 3.1 should come here

Figure 3.2 should come here

Figure 3.3 should come here

Figure 3.4 should come here
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As delta beta statistics for wine are comparatively small, it was decided that the residuals for all observation are small and the model is well fitted. Most points in figure 3.1 are clustered around zero, and have low leverages and low delta beta values implicating non-influential observations with small residuals. Figure 3.1 also provides evidence for possible influential points as there are few observations with high leverage values. Here 
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 approximately equal to 0.043 and the value of 
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 approximately equal to 0.064. Hence, it is seen that there may be eight influential observations of which two are extreme, two are moderate and four are small. These points could effect the model parameters and should be treated with caution. 
In figure 3.2 delta beta statistics for cider is plotted against the leverages for each observation. It is seen in figure 3.2 that most of the points are dispersed around zero with low leverages and low delta beta values for cider. These randomly scattered points indicate non-influential observations with small residuals. Also small delta-beta statistics implicates that there aren’t any outliers. Same influential points as in figure 3.1 are seen hare.
Figure 3.3 depicts the plot of delta-beta statistics against the leverages for beer. It is seen in figure 3.3 that most of the points are clustered around zero having low leverages and low delta beta values. 

This indicates that most of the observations are non-influential with small residuals. Few suspicious influential observations identified in both the figures 3.1 and 3.2 are shown in figure 3.3 as well. Three large residuals are also seen in figure 3.3.
Figure 3.4 illustrates the plot of delta beta statistics for tobacco against the leverages. As seen in the figure 3.4, most of the observations are non-influential and have small residuals. The delta-beta statistics for tobacco are small and have no particular pattern. Most points have small residuals and are non-influential. The few influential points identified in the previous plots are seen here too. There is one large residual.
From all four figures, 3.1, 3.2, 3.3, and 3.4 it is seen that most of the observations are non-influential with small residuals. But there are few suspicious influential observations with high leverage values. Thorough examination should be carried out on such observations. Delta beta statistics for all four variables wine, cider, beer and tobacco are relatively small. However, in figures 3.3 and 3.4 there are few deviated points which indicate large residuals. But since, a vast majority of the delta beta statistic values for these observations are relatively small and there are only two extreme outliers it could be concluded that the model is well fitted for the data obtained from the Ille-et-Vilaine study for esophageal cancer. 
Interpretation of the adjusted odds ratios
Table 3.6 depicts the adjusted (model-based) odds ratios for wine, cider, beer and tobacco.

Table 3.6 should come here

It was found that the relative odds of getting esophageal cancer, is 1.035 times higher for every unit increase in wine. This suggests that every increase in one gram of wine would increase the odds of getting esophageal cancer by 1.035 times. The 95% confidence interval for this odds ratio is (1.025, 1.044) which suggests a significant effect. 

Every increase in one gram of cider increases the risk of getting esophageal cancer by 1.028 times. The 95% confidence interval (1.020, 1.036) suggests a significant effect of cider. Also it is seen that the risk of getting esophageal cancer is 1.024 times higher for every increase in one gram of beer. This is also confirmed when 95% confidence interval (1.012, 1.036) is considered. Moreover it was found that the risk of getting esophageal cancer is 1.029 times higher when one gram of tobacco is increased. The confidence interval for the odds ratio is (1.012, 1.047). Also narrow confidence intervals implicate accurate estimation of parameters.

4. Discussion
Techniques to design and analyze many:many matched case-control studies are essential in practice. Case-control studies are relatively cheap and quick and therefore have become a popular means of determining risk factors for diseases especially in developing countries.

This paper discusses techniques to design a many:many matched case-control study and then analyze the data of such a design by using a subset of the data from the Ille-et-Vilaine study.
When there are confounding variables the matched case-control study is useful to control for confounding and to increase efficiency. The most general form of matched case-control study is the many:many case-control study as it prevents the discarding of cases/ controls as in 1:1, 1:many or many:1 studies.

It was found that age is a confounding variable for the two exposures alcohol and tobacco in the Ille-et-Vilaine study. Hence, age was used as the matching (strata) variable. Age was divided into nine strata in this study. All cases in each stratum were selected to find out whether alcohol and/or tobacco affect esophageal cancer. Random selection within each stratum was performed in order to obtain the controls for the analysis.

This paper also explicates the application of conditional logistic model to many:many matched case-control studies, with the main intention of finding out the factors affecting esophageal cancer. In selecting the model all three selection methods forward, backward and stepwise, were considered as the variables were found to be slightly correlated. Both backward and stepwise automatic methods in SAS gave the same model. Wine, cider, beer and tobacco were found to be affecting esophageal cancer.
But, the forward method gave a different model. From the leverage plots it was seen that observation 129 is a very highly influential point. Thus, the model was re-fitted using forward selection method by removing the observation 129 from data. The resulting model was same as what was obtained from backward and stepwise methods.

When the predictive power of the three models was considered it was seen that all three models have the same predictive power and hence, it was decided to select the model obtained using stepwise method to describe data. Wine, cider, beer and tobacco were found to be affecting the risk of getting esophageal cancer 
The delta-beta statistics for all four variables wine, cider, beer and tobacco were very small for most of the observations. The leverage values of most observations were also relatively small. This indicated that most of the observations are non-influential and have small residuals. There were few points deviating from the other points. These could be outliers and/or large residuals. Also, there were few suspicious influential points with relatively large leverages. It is better to investigate these few observations and observe whether these observations change the estimated parameters. 

However in general, most of the observations were non-influential with small residuals and also were randomly scattered. This signified that the selected model is well fitted and wine, cider, beer and tobacco consumption are risk factors for esophageal cancer.
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6. Annex

data eso;

infile "c:\SelectedLastForAnalysis.txt";

input Case Age AgeGroup Tobacco TobacGroup Beer BeerGroup Cider CiderGroup Wine WineGroup Aperitif AperitifGroup Digestive DigestiveGroup TotAlcohol AlcoGroup;


if TobacGroup = 5 then TobacGroup = '.';


index=_N_;


run;

proc logistic;

strata AgeGroup;

model Case(event = '1') = Wine Cider Beer Tobacco Aperitif Digestive Wine*Cider Wine*Beer Wine*Tobacco Wine*Aperitif 



Wine*Digestive Cider*Beer Cider*Tobacco Cider*Aperitif Cider*Digestive Beer*Tobacco Beer*Aperitif Beer*Digestive



Tobacco*Aperitif Tobacco*Digestive Aperitif*Digestive/selection=S rsquare; 

run;

proc logistic;

strata AgeGroup;

model Case(event = '1') = Wine Cider Beer Tobacco/rsquare;

output out=stat dfbeta=_ALL_ p=predprob h=hatm;

run;

data statn;

set stat;

run;

proc gplot data=stat;

plot dfbeta_Wine*index;

plot dfbeta_Cider*index;

plot dfbeta_Beer*index;

plot dfbeta_Tobacco*index;

plot dfbeta_Wine*predprob;

plot dfbeta_Cider*predprob;

plot dfbeta_Beer*predprob;

plot dfbeta_Tobacco*predprob;

plot dfbeta_Wine*hatm;

plot dfbeta_Cider*hatm;

plot dfbeta_Beer*hatm;

plot dfbeta_Tobacco*hatm;

run;
Table 3.1 – A summary of variable description

	Variable Name
	Description

	  Case
	0 = control

1= case

	Age
	Age at diagnosis

	Tobacco
	Tobacco grams per day 

(99 = unknown amount)

	Beer
	Beer in grams per day

	Cider
	Cider in grams per day

	Wine
	Wine in grams per day

	Aperitif
	Aperitif in grams per day

	Digestive
	Digestive in grams per day

	Alcohol*
	Total alcohol in grams per day




* - Total alcohol includes the consumption of all types of alcohols

Table 3.2 – Description of level of variables

	Variable Name
	Description of Levels
	Variable Name
	Description of Levels

	AgeGroup
	1
	
[image: image119.wmf]£

 40
	TobacGroup
	1
	0 – 9

	
	2
	41 - 45
	
	2
	10 – 19

	
	3
	46 – 50
	
	3
	20 – 29

	
	4
	51 – 55
	
	4
	30+

	
	5
	56 – 60
	
	5
	99 (unknown)

	
	6
	61 – 65
	AlcoGroup
	1
	0 – 39

	
	7
	66 – 70
	
	2
	40 – 79

	
	8
	71 – 75
	
	3
	80 – 119

	
	9
	> 75
	
	4
	120+


Table 3.3: Chi-square test results for testing whether age is a confounder

	Factors
	Chi-Square Value
	DF
	p-Value

	AgeGroup vs TobacGroup
	30.5824
	24
	0.1662

	AgeGroup vs AlcoGroup
	48.2167
	24
	0.0024

	AgeGroup vs Case
	106.4563
	8
	2.0336 E -19


Table 3.4: Number of cases and controls in each age group (stratum) in the original study and our study

	Age Group

(Stratum)
	Number of cases in each stratum
	Number of controls in each stratum
	Selected number of controls in each stratum

	1
	4
	232
	50

	2
	10
	99
	40

	3
	20
	87
	35

	4
	25
	64
	25

	5
	39
	78
	50

	6
	41
	96
	60

	7
	38
	58
	50

	8
	14
	34
	30

	9
	9
	30
	20


Table 3.5: Unadjusted odds ratios and their confidence intervals

	Variable
	Levels
	Odds Ratios
	95% Confidence Interval
	p-Value

	TobacGroup
	1 vs 4
	0.199
	0.100
	0.394
	6.462 E-06

	
	2 vs 4
	0.340
	0.167
	0.690
	0.3974

	
	3 vs 4
	0.346
	0.159
	0.753
	0.5404

	BeerGroup
	1 vs 3
	0.695
	0.421
	1.148
	0.9828

	
	2 vs 3
	0.488
	0.245
	0.971
	0.0704

	CiderGroup
	1 vs 3
	0.452
	0.285
	0.716
	0.0443

	
	2 vs 3
	0.434
	0.269
	0.703
	0.0271

	WineGroup
	1 vs 3
	0.204
	0.109
	0.383
	0.0070

	
	2 vs 3
	0.174
	0.106
	0.286
	2.161 E-06

	AperitifGroup
	1 vs 3
	0.777
	0.306
	1.970
	0.9835

	
	2 vs 3
	0.597
	0.235
	1.516
	0.1522

	DigestiveGroup
	1 vs 4
	0.432
	0.262
	0.715
	0.0038

	
	2 vs 4
	0.548
	0.311
	0.964
	0.3178

	
	3 vs 4
	0.745
	0.401
	1.387
	0.4685


Table 3.6 – Odds ratios and their confidence intervals

	Effect
	Odds Ratio
	95% Confidence Interval

	Wine
	1.035
	1.025
	1.044

	Cider
	1.028
	1.020
	1.036

	Beer
	1.024
	1.012
	1.036

	Tobacco
	1.029
	1.012
	1.047
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Figure 3.1 – Plot of delta beta for Wine against leverages

Figure 3.2 – Plot of delta beta for Cider against leverages
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Figure 3.3 – Plot of delta-beta for Beer against leverages
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Figure 3.4 – Plot of delta-beta for Tobacco against leverages
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