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 A Method for Sequential Analysis of Survival
 Data with Nonproportional Hazards

 M. R. Sooriyarachchi

 Department of Statistics and Computer Science, University of Colombo, Sri Lanka

 and

 John Whitehead*

 Medical and Pharmaceutical Statistics Research Unit, The University of Reading,

 P.O. Box 240, Earley Gate, Reading RG6 6FN, U.K.

 SUMMARY

 Two tests are proposed for comparing the survival curves of patients randomised between an
 experimental treatment and a control treatment when it is anticipated that the two survival curves
 may not satisfy the assumption of proportional hazards. The tests are particularly useful for the
 situation in which the survival curves are coincident or cross over early in the follow-up period and
 then diverge. The tests compare the probabilities of survival for longer than some fixed time since
 randomization for the two groups of patients. Both methods take account of the right-censored
 observations, and both are associated with methods for estimating and setting confidence limits for
 treatment differences. The first method is a mathematically direct approach based on the derivation
 of the efficient score statistic and Fisher's information. The second method is simpler, being based
 on Kaplan-Meier estimates and their variances. Conventional methods of sample size determination
 require the assumption of proportional hazards. Here a sequential approach is used, as it is difficult
 to set the sample size in advance without strong assumptions about the relationship between the
 two survival curves. Simulation results giving information on the size and power of the proposed
 tests are provided and the tests are applied to data from a clinical trial in breast cancer.

 1. Introduction

 Consider a comparative clinical trial in which the response of interest is the time from randomization
 to the occurrence of some well-defined event. The aim is to compare the survival experience of two

 groups of subjects, one group randomised to an experimental treatment and the other to a control

 treatment. Most sample size calculations and sequential designs for the comparison of survival

 curves are based on the assumption of proportional hazards (e.g., Machin and Campbell, 1987;
 Freedman, 1982; Tsiatis, 1982; Whitehead, 1992; Kim, 1992). This assumption implies that one
 survival curve dominates the other throughout the trial. Often, at the design stage of the trial, the

 relationship between the survival curves will be unknown. This is particularly true if patients are

 to be followed up over a long time period: e.g., 2-5 years of follow-up is common in cancers such
 as breast or prostate. At the end of a fixed sample trial, it might be possible to identify a suitable
 model on which to base the final analysis, although this would be data driven. However, at this

 stage, it would be too late to extend recruitment if it became apparent that a longer trial were

 needed for definitive comparison of the patterns of survival. In a sequential trial, no suitable model

 can be reliably identified from early interim analyses. Furthermore, if hazards are nonproportional,

 then the estimated hazard ratio is dependent on calendar time, resulting in different hazard ratio

 estimates at different interim analyses. In this case, variation in hazard ratio estimates between

 * Corresponding author's email address: mps~reading.ac.uk
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 Sequential Analysis of Survival Data 1073

 interim analyses is due not only to random variation but also to the fact that the hazard ratio is

 time dependent (Gregory et al., 1997).

 This paper is concerned with two tests for use in sequential trials for the comparison of survival

 curves when the hazards are or might be nonproportional. The methods proposed allow survival

 curves to be compared without making any assumptions about the relationship between them. They

 are especially appropriate in cases in which the survival curves are coincident or cross over early

 in the follow-up period and then diverge. The tests compare the probabilities of survival for longer

 than some fixed time (T) since randomization for the two groups of patients. The time point T is

 selected to reflect long-term survival and therefore to exceed any anticipated point of divergence or

 crossing and to be of clinical interest. An example of survival curves with early crossing might be

 a breast cancer clinical trial in which the control treatment is chemotherapy and the experimental

 treatment is surgery. There may be more deaths on the experimental treatment within the first few

 months of treatment due to operative mortality, whereas patients on the chemotherapy will have a

 good chance of surviving this early stage. During the first few months after treatment, the survival

 curve for the surgery group will be consistently lower than the survival curve of the chemotherapy

 group. However, when the early phase, with its dangers of operative mortality, has passed, the

 survivors in the surgery group might have a better chance of subsequent survival than those on

 chemotherapy due to the long-term effectiveness of the surgical treatment.

 The first test considered is a generalization of the method of Whitehead (1984) for a single-

 arm study comparing the probability of survival past a fixed point for a group of patients on

 an experimental treatment with a known value. The method takes account of the right-censored

 observations and is thus referred to hereafter as the censored binary method. The second test is

 based on the Kaplan-Meier estimates of survival past time T for the two treatment groups and

 their variances as given by Greenwood's formula. Both methods require that some patients in

 both experimental and control groups pass time r since recruitment before they can be used. Thus,

 although sequential, they will not react directly to the extreme situation of a large excess of failures

 before time r in one treatment group.

 In this paper, the methodologies are applied to sequential designs with straight-line boundaries,

 although they would fit in with other sequential methods equally well. The approach from which

 the censored binary method is derived originated in the work of Bartlett (1946), was developed by

 Whitehead (1978), and is described in detail in Whitehead (1997). In general, the true advantage of
 one treatment over another is represented by a parameter 0. At any interim analysis, two statistics

 (Z and V) are calculated, where Z is the score statistic for 0 evaluated under the null hypothesis

 and acts as a cumulative measure of the evidence that 0 is positive and V is Fisher's information,

 which is a measure of the information about 0 available in the data. In sequential trials, Z is

 plotted against V until an appropriate boundary is crossed. Conditional on V, Z has mean OV

 and variance V. In many special cases, the sample path formed by plotting Z against V over time

 can be approximated by a Brownian motion with drift 0, as has been proved in the context of

 specific survival models by Sellke and Siegmund (1983) and Tsiatis, Boucher, and Kim (1995). If

 such a result were true in the situation considered here, then it would directly justify the properties

 claimed for the censored binary method. We have not proved this result, and so the validity of both

 the censored binary and Kaplan-Meier approaches are based only on heuristic considerations and

 on demonstration through simulation.

 Sections 2 and 3 of this paper introduce the censored binary and Kaplan-Meier methods, respec-

 tively, and Section 4 describes other methods used for comparison. Section 5 presents the simulation

 results, and Section 6 concerns an illustrative reanalysis of data from a breast cancer trial.

 2. The Censored Binary Method

 2.1 Grouping Survival Data

 In order to apply this method to continuous survival data, the data must first be grouped into a

 small number of intervals (t 1, tin, i =,.. , h, to = 0, th = T. The selection of the cutpoints of
 the intervals, ti, is made for convenience. Mathematically, it is desirable that the interval cutpoints
 are chosen in such a way as to have equal numbers of events in each interval. From the continuous

 survival data, information on the occurrence or nonoccurrence of the event during each of the

 intervals of time since randomization of the patient (ti_1, t2] is extracted for each patient. The
 information on the occurrence of the event in (ti_1, ti] should only be used after time t2 has elapsed
 since the patient in question was recruited to the trial, in order to avoid biased overestimation of
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 1074 Biometrics, September 1998

 absolute event rates. Thus, no data at all should be used on a patient until time t1 has elapsed
 after randomization. Sometimes survival data come naturally in this grouped form and are termed

 interval-censored data (Whitehead, 1989). As an example, consider data collected in the following

 way. Patients are examined by a doctor at times tI, . . ., th after randomization. At each visit, the
 doctor determines by way of a diagnostic test whether the event has occurred since the last visit.

 The datum for a patient consists of the interval (t, ti], i = 1, ... , h, in which the event falls.

 Continuous survival data can be used in the censored binary method without grouping if each

 event time is used as a cutpoint in the grid of intervals and has a corresponding parameter. The

 number of parameters is then very large, and although consistent estimates can be found, the

 computation becomes complex. In practice, it is better to group them into intervals; it is unlikely
 that much loss of efficiency will result.

 2.2 The One-Sample Case

 In order to fix ideas, we first suppose that all patients receive the experimental treatment. The

 null hypothesis Ho: Ph = p* is to be tested against the alternative H1: Ph 7& p*, where Ph is
 the probability of survival past time r = th and p* is some known probability. The measure of
 treatment difference 0 between Ph and p* is taken to be the log odds ratio

 0 = log { }

 Further notation is introduced as follows. The quantities involved can be calculated at any time

 during the trial. The number of survival times since randomization that have values within (ti_ 1, tz]
 is aj, and the number of survival times greater than ti is si. The probabilities Pi and qj are de-
 fined as

 Pi = P(T > t-) and q- = P(T C (ti-Ivt.] I T > t-I_),
 where T is a typical survival time, i = 1, . . ., h. Let ? denote the vector-valued nuisance parameter
 made up of the parameters P1, . . , Ph-I and X* denote its maximum likelihood estimate given
 that 0 = 0. The log likelihood of 0 and ? based on the data is denoted by X, and to and too
 denote, respectively, the first and second derivatives of f with respect to 0. Similarly, derivatives

 with respect to ? are denoted by to and to,? and the mixed derivative of f with respect to 0 and
 X is denoted by too5.

 The sequential method makes use of the statistics Z and V, which are derived from the equations

 Z = fo(0,4/) and V f

 where {ffo}-1 = too - foffoo-1foo. Whitehead (1984) gives the derivation of Z and V for the
 one-sample case. The values of Z and V so derived can be expressed as

 Z = r(1- *) and V [(1p *)2 Sh + P*2(1 P*)2 /Bh - (1 *)(1 -2p*)71

 where rj satisfies

 TI (? si,-q) =*
 71-1

 o=1 soi ,si-r
 B .-b-a --I + b 3 + B p-I

 B. 3 3j1~J1b + 3 _ 3 j= 2, ..., h andBI =bl, B3 (a yIBI + 1) ,

 and

 _(s3 - s'+I - +I
 a=^ j = h-1

 PiY

 bj = P 11 ...j = 1 .
 oj

 2.3 The Two-Sample Case

 Consider the recruitment of two samples of patients, those randomised to an experimental treatment

 (E) and those allocated to the control treatment (C). All quantities will be defined as for the one-

 sample case, with the second subscript E or C added to distinguish between those pertaining to

 the experimental and control samples, respectively.
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 Sequential Analysis of Survival Data 1075

 The null hypothesis Ho: PE = PC is to be tested against the alternative H1: PE #4 PC, where

 PE PEh and PC PCh are the probabilities of survival beyond time T = th for patients on E and
 C, respectively. The parameter of interest measuring the difference between treatments is taken to

 be the log odds ratio 0 = log [PE (1 - PC) / {PC (1 - PE)}]. The nuisance parameter q is a vector
 consisting of = log[PEPC/{(1 - PE)(1 - pC)}], (q1,E,.. , qh-1,E), and (qic, ... qh-1,C), and (A
 is its maximum likelihood estimator given that 0 = 0. The likelihood function is given by

 h

 L iqE (-iE)s iE q o'cc 1qic ) sic iE

 The log likelihood is maximised subject to the constraint that 0 = 0 using Lagrange's method.

 This gives

 A - qE A iC
 (?iE + SiE-a (Oic + Sic + a),

 where rj satisfies

 ft ( ) ip ( * (2.1)

 and p* is the common value of the two products. It follows after manipulation similar to that

 carried out in the one-sample case that the statistics Z and V used for sequential testing are giv-

 en by

 Z = r(1 - p*)

 and

 V - - [P*2(1 _ P*)2f(E)f(C) (EE + FCC),

 where f(E) = WEE + [(1 - 2p*)rh/{p*2 (1 _ p*)}],fEE = -(ShE/P*2 + 1/BhE), f(C), and fcc are
 defined similarly for the control treatment, and the B terms are as defined for the one-sample case.

 The value of rj can be found by solving the polynomial (2.1), which has 2h - 1 roots. As

 01,E + S1,E > S1,E > 02,E + S2,E > S2,E > -.. > ShE and similarly for the control treatment,
 it can be shown that only one root lies between -Shc and ShE. This is the required value of rj to
 make all of the q2,c and qiB positive.

 For this method, the Fisher's information V can be determined only when there are deaths

 in each of the intervals. If any interval has no deaths, this interval should be combined with a

 neighbouring interval in such a way as to make all intervals contain deaths.

 When there is no censoring, these expressions for Z and V reduce to

 =rlEdC-rl,CdE and V~ rl,Erl,CSd
 Z rliE + rC (rlE + rlc)3'

 where dE and dc denote the total numbers of events within time T observed on the experimental

 and control treatments respectively, d = dE + dc, and s = Sh,E + ShC is the total number of
 survivors. Further, riE = 01,E + S1,E and rlC = ol,c + sic, the total number of patients in
 the trial on experimental and control treatments, respectively. The statistic Z2/V is the familiar
 statistic of the x2 test for a 2 x 2 contingency table.

 Estimates of the magnitude of the treatment effect 0 and corresponding confidence intervals can

 be calculated using any method that allows for interim analyses.

 3. The Kaplan-Meier Method

 In the censored binary method, the test statistics Z and V satisfy the approximate relationships

 E(Z) = OV and var(Z) = V mentioned in Section 1, where 0 is the log odds ratio. A natural
 alternative is to use the Kaplan-Meier estimates 13B and jPc and to equate Z/V to the resulting
 estimate of 0, i.e.,

 Z -log {P( PC (3.1)
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 1076 Biometrics, September 1998

 Here the data are used in the grouped form introduced in Section 2, although the ungrouped version

 now becomes simple to apply. From Greenwood's formula,

 var(PE -kPC) = (P2WC + p2WE), (3.2)

 where

 W = E { (ic ) } and WE = E { iE
 Sic (Oic + sic) ~SiE (OiE + SiE)

 The variance of Z/V can be related to var(PE - PC) using a Taylor series approximation. A
 first-order Taylor series approximation of the logit of PE is

 log (PE) llog ( ) + (PE BE) +1 -PB)

 Using this result, a first-order Taylor series approximation of Z/V about 0 is

 Z (j1__N. 1
 V = 0 + (PE)PE) + -(PC-PC) (C+ 1 )

 Under Ho: 0 = O,PE =PC = P (say), and so Z/V can be expressed as

 z1
 V (E PC( -)

 Thus, the null variance of Z/V is

 var (\V) =var(PE-P3C) 1
 p2(l1- p)21

 where p can be estimated by (PE + Pc)/2 or from a common Kaplan-Meier curve. Using the first
 of these options, taking var(Z/V) 1/V and using expression (3.2), the following expressions can
 be found for Z and V:

 Z= log ~ } V
 {PC (1 -PE)}

 and

 V- P 2 1 2
 p2 WC + p2WE

 where

 P = (PE + PC)/2.

 When there is no censoring, these expressions for Z and V reduce to

 ShEdC (rlEsh,C + rlCshE) (rl,Edc + rlCdE)2

 ShCdE 16rl ErC(r3 Eshcdc + r Csh,EdE)

 in the notation of Section 2.3.

 The method presented here is a natural extension of the ideas of Cox (1963) for the comparison
 of two binary parameters. The value of V for no censoring given above does not coincide with that

 given by Cox because it is evaluated under the null hypothesis. The approach is also related to the

 more recent paper by Lan and Zucker (1993).

 4. Three Alternative Methods

 In this paper, the performances of the censored binary method (method 1) and the Kaplan-Meier
 method (method 2) are compared with three alternative approaches. Method 3 is a version of the
 censored binary method based on first-order Taylor series approximations to determine roots of

 the (2h -1)-order polynomial (2.1). Considerable manipulation leads to approximate versions of Z

 and V as

 Z- (3E-13C){3C (1-PE) WC?+PE (l1-PC)WE}
 (j3CWC +PEWE)G
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 Sequential Analysis of Survival Data 1077

 and

 V {PC (1 -PEB) WC + PE (1- ) WE } (CWC + PWE)
 (PC WC + PEWE)4

 In Section 5, it is shown that this method achieves the power specification accurately, but the

 example of Section 6 revealed that V is not always monotonically increasing during the study. The

 latter property would cause problems in application.

 Method 4 is a binary approach that uses only completed binary observations of survival to time

 r and ignores the censored observations. In this method failures cannot be used until time r has

 elapsed since recruitment of the patient. This is to avoid inflating hazard estimates because, even

 though information about failures may be known early, information on survivors will be known only

 once time T elapses after recruitment. Method 5 is the modified log rank test for interval-censored

 data explained in Section 3.5 of Whitehead (1997). For five intervals or more, this is approximately

 equivalent to the log rank test itself. It is used here to represent the log rank test in a form that

 lends itself more easily to an investigation by simulation.

 5. Sequential Comparisons of Survival

 5.1 Stopping Boundaries of the Triangular Test

 The triangular test is used here to illustrate sequential methodology based on the statistics derived

 in the previous section. It is derived from the boundaries approach and is a descendant of the

 sequential probability ratio test of Wald (1947). In this approach, test statistics Z2 and Vi are
 calculated at the ith interim inspection (i = 1, 2,...) and are plotted against each other until

 certain stopping boundaries are crossed or until Vi exceeds some maximum value Vmnax. The form
 of the stopping boundaries is asymmetric and can be determined from the following specifications:

 (a) a specific value of the measure of treatment difference 0 (OR) > 0, known as the reference
 improvement;

 (b) the two-sided significance level (a) at which the null hypothesis is to be rejected;

 (c) the power (1 - Q) to reject the null hypothesis of no treatment difference at level a and to

 conclude that the experimental treatment is superior when 0 = OR.

 No restriction is placed on the probability, under 0 =-OR, that Ho is rejected and inferiority
 concluded. Figure 1 shows the continuous stopping boundaries of the triangular test. These

 boundaries will satisfy the power requirement only if monitoring is continuous, which is not feasible

 in practice. As inspections occur at discrete time points, it is possible for excursions outside

 boundaries to occur between inspections and not be observed. Therefore, a correction referred

 to as the Christmas tree correction is made. This is described in Whitehead (1997) and consists
 of the use of less stringent inner boundaries that make stopping easier when inspections do occur.

 The correction brings the boundaries in by the amount 0.583(Vi -Vi)1/2 at the ith inspection,
 i =1, 2,.. .; Vo = 0. The correction is illustrated in Figure 3, and it has been found to be accurate
 for the triangular test, in comparison with repeated numerical integration calculations, by Stallard

 EXPERIMENTAL TREATMENT SUPERIOR

 z NO TREATMENT DIFFERENCE

 7 ,' V

 EXPER IMENTAL TREA TMENT I NFER IOR

 Figure 1. Continuous boundaries of the triangular test.
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 1078 Biometrics, September 1998

 and Facey (1996). Given a, 1-/3, and OR, the package PEST3 (Brunier and Whitehead, 1993) can be
 used to determine the stopping boundaries. A property of the triangular test is that, asymptotically

 as a tends to zero, it minimises the maximum expected sample size among tests having the same

 power requirement.

 5.2 Simulation Study

 In the simulations, time was treated as discrete, with months chosen as the time unit. The cut

 points t1,. . . , th were all taken to be whole numbers of months. At times 0,1,... R, batches of
 patients were recruited, and at times 1, 2,..., F (F > R), numbers of deaths were recorded. No

 patient was "dead on arrival" it would be at least 1 month before a death could be notified.

 The number of patients recruited to E at month i is denoted by miE and was generated as Poisson
 with mean A, i = 0,... R, f. The number amongst this batch of miE who die after month i + tpi
 and at or before month i + tj is denoted by d2JE (i+ tJ < F). In terms of months since recruitment,
 their survival times lie in (t.-1, tj], where tj-I is excluded from the interval and t3 is included.
 The number of these miE subjects surviving beyond month i + tjI is miE - Di(.1), where
 Di(j-1)E = diE + + d.(_1)E. The value of d2jE was generated from the binomial distribution,
 parameters miE - Di(jl)E and qjE. Survival patterns on C were generated in a similar way.

 The parameter values were selected as follows. The two-sided significance level was set at a = 0.05

 and power was set at 1 - = 0.90. The point of comparison of the two curves was taken to be
 Tr 12 months. Five intervals (h = 5) were considered. The cutpoints of the intervals were at

 t i1= t2 = 3,t3 = 6,t4 = 9, and t5 = 12 months, respectively. The value of PC (= Pc5) was
 taken to be 0.30. The reference improvement was taken to be OR = log(2) = 0.693 on the log

 scale, so that PE was fixed under both the null and alternative hypotheses. The remaining survival
 probabilities, PCi, . . ,PC4,PE1, ... iPE4, were filled in using the Weibull distribution. Three cases
 were used: shape parameters (bE and bc) equal (proportional hazards), bE < bc (giving curves
 that cross), bE > bc (giving divergent hazards). Figure 2 illustrates the survival curves considered.
 The number of patients entering per treatment group per month (A) was taken to be five.

 Each case was simulated separately under Ho and H1. The number of simulations carried out
 for each case was 10,000. Five methods of analysis were compared. Interim inspections of the data
 were conducted after each month.

 5.3 Simulation Results

 Table 1 gives, under Ho and H1, the observed proportions of rejections of Ho, with the conclusion
 that the experimental treatment is superior, the average and 95th percentile of duration, and the

 average and 95th percentile of sample size for the three shapes of survival curves and five methods
 of analysis.

 The 95% probability interval for the estimate of true power, based on an approximate value
 of 0.90, is (0.894, 0.906). The 95% probability interval for wrongfully concluding experimental
 superiority when Ho is true based on an approximate value of 0.025 is (0.022, 0.028). Methods 1,
 3, and 4 are satisfactory with respect to significance level and power for all three cases. Method
 2 is satisfactory with respect to power, but the significance level is slightly inflated. Method 5,
 which is the interval-censored log rank method, gives accurate power and significance level only

 when the shape parameters are equal, i.e., when the hazards are proportional. When the hazards

 are not proportional, method 5 gives very poor error rates. The average and 95th percentile of the

 duration are very similar for methods 1, 2, and 3. The average and the 95th percentile of duration

 of method 4 are higher than the corresponding values for methods 1, 2, and 3. This illustrates that
 method 4 is less efficient than methods 1, 2, and 3. When the hazards are proportional, method 5

 gives much shorter durations than the other four methods. This illustrates that the log rank test

 is more powerful than all the other tests when the hazards are proportional. However, as shown

 by the results of Table 1, it gives completely unpredictable error rates when the hazards are not
 proportional. Note that, in the case of nonproportional hazards, type I error consists of rejecting

 Ho when the survival probabilities past r on E and C are equal. Other features of the survival
 patterns may differ, even under Ho. The results for sample size are similar to those for duration.

 The main conclusion from the simulation study is that the censored binary method (method 1)

 is more accurate and efficient than the two conventional methods (methods 4 and 5). The Kaplan-
 Meier method (method 2) is as efficient as the more complex method 1 but less accurate than

 method 1. The Taylor series method (method 3) is as successful as method 1.

 6. Example

 The data used for illustration are drawn from a randomized clinical trial in locally advanced breast
 cancer conducted by the European Organisation for Research and Treatment of Cancer (EORTC)
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 Table 1

 Observed proportions of rejections of Ho concluding that the experimental treatment

 is superior, the average and 95th percentiles of duration, and the average and 95th
 percentile of sample sizes for the three shape parameters and five methods of analysis

 Shape Methods of analysis
 parameters 1 2 3 4 5

 Observed Proportion of Rejections of Ho Under
 Ho (Upper Figure) and H1 (Lower Figure)

 bE= b- 0.027 0.033 0.027 0.024 0.026
 0.900 0.899 0.902 0.896 0.902

 bE < b 0.022 0.030 0.025 0.024 0.000
 0.895 0.899 0.896 0.894 0.103

 bE > bc 0.025 0.032 0.028 0.028 0.579
 0.904 0.904 0.900 0.898 0.999

 Average and 95th Percentiles of Duration Under
 Ho (Upper Figure) and H1 (Lower Figure)

 bE = b 30, 47 29, 46 30, 48 33, 51 22, 34
 31, 48 29, 47 31, 48 35, 53 27, 43

 bE < b 28, 45 28, 45 28, 46 34, 51 16, 20
 30, 46 29, 45 31, 47 35, 53 23, 42

 bE > bc 30, 48 30, 47 31, 48 34, 51 28, 43
 32, 49 30, 48 32, 49 35, 52 19, 28

 Average and 95th Percentiles of Sample Size Under
 and Ho (Upper Figure) H1 (Lower Figure)

 bE = bC 298, 469 292, 463 298, 474 335, 509 215, 339
 311, 479 294, 470 314, 482 350, 529 269, 429

 bE < b 283, 449 281, 445 284, 462 336, 513 165, 207
 300, 459 287, 452 309, 470 352, 525 233, 414

 bE > bC 304, 476 299, 474 307, 482 335, 512 278, 426
 317, 489 302, 481 321, 491 351, 523 185, 281

 a Methods are (1) censored binary, (2) Kaplan-Meier, (3) Taylor series approximation, (4) complete
 binary, and (5) approximate logrank.

 and reported in Rubens et al. (1989). A statistical discussion is given by Sylvester, Bartelink, and
 Rubens (1994). The aim of the trial was to study the efficacy of chemotherapy (CT) and hormone
 therapy (HT) after radiotherapy (RT). The trial was set up as a 2 x 2 factorial design with treatment
 combinations RT, RT+HT, RT+CT, and RT+CT+HT. There were 363 evaluable patients recruited

 during a period of approximately 6 years. The follow-up period was a further 4 years. The objective

 of our analysis was to examine the main effect of chemotherapy on mortality, stratifying for hormone

 therapy, using the censored binary method and the Kaplan-Meier method. The triangular test

 was adopted as the sequential design. The data available comprised the randomization date and
 treatment allocation of all patients and the date of death of those who died. From this information,
 the status of each patient at each interim analysis could be determined. Of course, if these had
 been real, prospective interim analyses, then the statistician conducting them would not have had
 complete up-to-date information on all events that had occurred. No attempt was made in our
 simulations to model delays in data flow: one can imagine the specified timings as being cut-off
 dates for data capture, with actual interims being performed about 1 month later.

 In the sequential design that we imposed to reanalyse this completed trial, an overall two-sided

 significance level of af = 0.05 and a power of 1 -,3 = 0.90 were used. In two separate reanalyses,
 the survival curves were compared at Tr 1 year and r = 3 years. The reference improvement in
 terms of the log odds ratio was set at 0.693. This corresponds, e.g., to survival probabilities at 1
 year of 0.82 for experimental and 0.70 for control and at 3 years of 0.57 for experimental and 0.40
 for control. The first interim analysis was done 6 months after I years, and thereafter analyses were

 conducted at 6 monthly intervals. For T 1 year, the interval cutpoints used were 1, 3, 6, 9, and
 12 months. For T 3, the interval cutpoints used were 6, 12, 18, 24, and 36 months.

 Table 2 gives the results of the chemotherapy main effect at 'r =1 year for each interim analysis
 until termination for the censored binary method and Kaplan-Meier method. The table gives the
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 Table 2

 Results of the chemotherapy main effect at Tr 1 year for each interim analysis

 until termination for the censored binary method and the Kaplan-Meier method

 Method

 Number of Censored binary Kaplan-Meier

 Inspection Month patients Zi Vi Zi Vi

 1 18 79 0.222 0.730 0.220 0.748
 2 24 120 0.091 1.251 0.091 1.251
 3 30 178 1.917 2.503 2.424 2.593
 4 36 222 2.626 2.849 3.149 2.938
 5 42 251 3.233 4.002 3.408 4.059
 6 48 287 5.086 5.328 5.556 5.456
 7 54 319 4.610 5.612 4.877 5.697
 8 60 349 4.576 6.111 4.812 6.186
 9 66 361 3.580 6.586 3.746 6.635

 interim inspection number (i), the corresponding month, the number of patients recruited, and the

 values of Zi and Vi. For both methods, the trial continues until the 66th month and ends without
 a conclusion. The amount of data collected in the study was insufficient for reliable comparison of

 the 1-year survival rates, and a sequential design would have continued further. At each interim

 inspection, Z and V were calculated separately for the two strata formed by the hormone effect.

 In order to test the null hypothesis, the overall values of Z and V were found by summing the

 values of Z and V over the two strata at each interim inspection. Table 3 is similar to Table 2

 and gives the results of the chemotherapy main effect at + = 3 years for each interim analysis

 until termination for the censored binary method and Kaplan-Meier method. For both methods,
 the trial stops at the 66th month due to lack of effect. This leads to the conclusion that, after

 3 years, the benefit of chemotherapy is not significant. In this particular example, the pattern of

 survival curves is such that the conclusion concerning long-term survival (3 years) is clearer than

 that concerning short-term survival (1 year). Kaplan-Meier curves show a separation of survival
 curves at 1 and 2 years, with convergence at 3 years.

 Tables were also constructed for the Taylor series method (method 3), but they are not
 presented here. It was observed that, for the Taylor series method, Fisher's information V was not

 monotonically increasing with the number of deaths but fluctuated, sometimes moving backwards

 by as much as two to three units. This is an undesirable property and is probably due to the fact

 that second- and higher-order terms were dropped in the approximations used for determining Z

 and V.

 Figure 3 gives the boundaries of the triangular test with the Christmas tree correction and the

 sample path for the comparison of chemotherapy versus no chemotherapy at r = 3 years, stratified

 for hormone therapy and using the censored binary method. Analysis from PEST gives a p-value

 of 0.959. The median unbiased estimate of 0 is -0.0155 and the 95% confidence interval for 0 is

 (-0.591,0.599).

 Table 3

 Results of the chemotherapy main effect at r = 3 years for each interim analysis
 until termination for the censored binary method and the Kaplan-Meier method

 Method

 Number of Censored binary Kaplan-Meier
 Inspection Month patients Zi Vi Zi Vi

 1 42 251 -0.166 1.351 -0.209 1.363
 2 48 287 -0.730 3.220 -0.839 3.421

 3 54 319 0.725 5.833 0.726 6.191
 4 60 349 2.619 9.122 2.606 8.992
 5 66 361 -1.241 12.935 -1.303 13.102
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 Figure 3. The triangular test with the Christmas tree correction and the sample path for the

 chemotherapy effect at 3 years using the censored binary method.

 7. Discussion

 The censored binary method (method 1) is an accurate and valid method for comparing survival

 curves when the assumption of proportional hazards is invalid or in doubt. It is more efficient than

 an analysis based on completed binary responses (method 4) as the information on deaths can be

 used as early as time t1, long before the time r at which point the survival curves are compared.
 Although it is less efficient than the log rank test (method 5) when the assumption of proportional

 hazards holds, it is far more accurate than the log rank test in cases where this assumption is

 invalid. An attractive property of the censored binary method is that it becomes the standard

 approach to 2 x 2 tables when no censoring is present. The censored binary method requires the

 solution of a polynomial of order 2h - 1, where h is the number of intervals. Thus, this method

 is computationally complex and requires special software for determining the values of Z and V.

 The Kaplan-Meier method (method 2) is as efficient but somewhat less accurate than the censored

 binary method. However, the Kaplan-Meier method is computationally very simple and requires

 no new software for the derivation of Z and V. The approximate method based on the Taylor series

 approximation (method 3) is perhaps inappropriate for practical use as the test statistic V based

 on this method is not a monotonically increasing function of the number of deaths.

 The model, parameter, and statistics introduced here could be used with other forms of sequential

 design, including the ca-spending function methods of Lan and DeMets (1983) and the designs

 incorporated into the software package EaSt (Cytel, 1992). In fact, the choices "one-sided test" and

 "early rejection of Ho or H11" in EaSt lead to a design very similar to the triangular test. In view of
 the accuracy demonstrated in the case of the triangular test, it seems likely that the method would

 be accurate for other designs, too. The Christmas tree correction makes simulation of triangular

 tests relatively easy. The unequal and unpredictable increments of information inherent in this

 method mean that, in most other methods, individual stopping rules would have to be calculated

 separately for each of the 10,000 replicate simulations, rendering the exercise more computationally

 onerous.

 When the censored binary method was compared with the full binary method (method 4) in
 the simulations, the reduction in duration was approximately 3 months, with a modest decrease in

 the sample size of 50 patients. In a case where one treatment group is seriously disadvantaged, the

 reduction in duration will be greater. If a naive binary method that uses deaths as soon as they

 occur is adopted, problems will arise when there is early transient elevation of hazard in one group

 due, e.g., to surgery.
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 RESUME

 Deux tests sont proposes pour comparer les courbes de survie de patients randomises entre un
 groupe experimental et un groupe control, quand l'hypothese des risques proportionnels peut ne
 pas etre satisfaite. Les tests sont particulierement interessants lorsques les courbes de survie sont
 proches ou se croisent tot dans la period de follow-up et divergent ensuite. Les tests comparent
 les probabilities de survie apres un temps fixed depuis la randomisation, pour les 2 groupes de
 patients. Les 2 methodes prennent en compte les donnees censurees a droite et sont toutes deux
 associees avec des methodes estimant et determinant les limites de confiance pour les differences
 de traitement. La premiere methode est une approche directe derivee de la statistique du score
 d'efficience et de information de Fisher. La deuxieme methode est plus simple et est basee sur les
 estimations de Kaplan-Meier et de leurs variances. Les methodes conventionnelles d'estimation de
 taille d'echantillon necessitent l'hypothese de hasards proportionnels. Une approche sequentielle est
 utilisee a cause de la difficult de determiner la taille d'echantillon par avance sans hypotheses fortes

 sur les relations entre les 2 courbes de survie. Les resultats de simulations donnant de information,
 sur le seuil de signification et la puissance des tests proposes, sont donnes et les tests sont appliques
 aux donnees d'un essai clinique dans le cancer du sein.
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