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Fig 1(a) – Histogram of the log of total cases and Fig 1(b) – Normal Probability plot of the log of 

total cases. 

  



 
                Figure 2 – Studentized Residuals versus Fitted Values 

  



 

 

 

 

 

 

                                 Figure 3 – Plot of Studentized Residuals versus Fitted values for the Traditional Model 

 



Table 1 – Details of the data 

Class Levels Values  

country 144 Afghanis Albania Algeria Andorra Angola Antigua Argentin Armenia 

Australi Austria Azerbaij Bahamas Bahrain Barbados Belarus Belgium 

Belize Benin Bermuda Bhutan Bolivia Bosnia_H Botswana Brazil Brunei 

Burkina_ Burundi CAR Cabo_Ver Cambodia Cameroon Canada Chad 

Chile China Colombia Congo Croatia Cuba Cyprus Djibouti Dominica 

Ecuador Egypt Eswatini Ethiopia Fiji France French_P Gabon Gambia 

Georgia Ghana Gibralta Greece Grenada Guam Guatemal Guinea Guinea-

B Guyana Haiti Honduras Hungary Iceland India Indonesi Iran Iraq 

Ireland Italy Jamaica Japan Jordan Kenya Korea Kosovo Kuwait Lao 

Latvia Lebanon Libya Lithuani Macedoni Madagasc Malawi Malaysia 

Maldives Mali Mauritan Mauritiu Mexico Mongolia Monteneg Morocco 

Mozambiq Myanmar Namibia Nepal Netherla New_Zeal Niger Nigeria 

Oman PNG Panama Paraguay Peru Philippi Poland Portugal Romania 

Rwanda Saudi Senegal Seychell Sierra_L Singapor Slovakia Slovenia 

Somalia Sudan Suriname Sweden Switzerl Tanzania Togo Trinidad 

Tunisia Turkey UK USA Uganda Ukraine Uruguay Uzbekist Venezuel 

Zambia Zimbabwe 

region 5 AFR(African region) AR (American region) ER (European region) SEA 

(South East Asian Region) WPR (Western Pacific Region) 

dist 2 Normal Poisson 

trans_type 3 Clusters Community Sporadic 

 

 

 

  



Table 2 - Comparison of Models 

   Joint Model  Poisson Model  Normal Model  

AIC 1043.34  749.37  538.84 

 

 

Z statistic of 

Variance 

parameter 

(region)   

(Wald Test) 

0.34 1 1.19 

Z statistic of 

Variance 

parameter 

country(region) 

(Wald Test) 

8.04 6.56 3.14 
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Data Covid_19; 

input country$ tccases nccases tdeaths ndeaths trans_type$ dslrcase region$; 

if region=0 or region=3 then delete; 

if region='cases' then delete; 

if region='EMR' then region='ER'; 

srcase=dslrcase; 

if srcase=0 then X=0; 

if srcase > 0 then X=1; 

ltcases=log(tccases); 

srcasen=srcase+1; 

lsrcasen=log(srcasen); 

cards; 

China 84369 22 4643 0 Clusters 0    WPR 

Singapore 15222 799 14 0 Clusters 0    WPR 

Japan 13852 276 389 13 Clusters 0    WPR 

Korea 10761 9 246 2 Clusters 0    WPR 

Philippines 7958 181 530 19 Clusters 0    WPR 

Australia 6738 13 88 4 Clusters 0    WPR 

Malaysia 5851 31 100 1 Clusters 0    WPR 

New_Zealand 1126 2 19 0 Clusters 0    WPR 

VietNam 270 0 0 0 Clusters 4    WPR 

Brunei 138 0 1 0 Sporadic 9    WPR 

Cambodia 122 0 0 0 Sporadic 17    WPR 

Mongolia 38 0 0 0 Sporadic  2    WPR 

Lao 19 0 0 0 Sporadic 16    WPR 

Fiji 18 0 0 0 Sporadic 8    WPR 

PNG 8 0 0 0 Sporadic 6    WPR 

Guam 140 2 5 0 Clusters 0    WPR 

French_Polynesia 58 0 0 0 Sporadic 1    WPR 

New_Caledonia 18 0 0 0 Sporadic 26    WPR 

Italy 201505 2091 27359 382 Community 0    ER 

UK 161149 3996 21678 586 Community 0    ER 

Germany 157641 1304 6115 202 Community 0    ER 

France 125464 0 23627 366 Community 0    ER 

Turkey 114653 2392 2992 92 Community 0    ER 

Russia 99399 5841 972 105 Clusters 0    ER 

Belgium 47334 647 7331 124 Community 0    ER 

Netherlands 38416 171 4566 48 Community 0    ER 

Switzerland 29181 100 1379 27 Community 0    ER 

Portugal 24322 295 948 20 Community 0    ER 

Ireland 19877 229 1159 57 Community 0    ER 

Sweden 19621 695 2355 81 Community 0    ER 

Austria 15314 58 569 20 Community 0    ER 

Poland 12218 316 596 34 Community 0    ER 

Belarus 12208 0 79 0 Clusters 1    ER 

Romania 11616 277 650 19 Community 0    ER 

Ukraine 9866 456 250 11 Community 0    ER 

Czechia 7504 55 227 4 Community 0    ER 

Hungary 2727 78 300 9 Clusters 0    ER 

Greece 2534 0 136 0 Community 1    ER 

Croatia 2047 8 63 4 Community 0    ER 

Uzbekistan 1955 31 8 0 Clusters 0    ER 

Armenia 1932 65 30 0 Clusters 0    ER 

Iceland 1795 3 10 0 Community 0    ER 

Azerbaijan 1717 39 22 0 Clusters 0    ER 

Bosnia_Herzegovina 1588 24 62 2 Community 0    ER 

Lithuania 1449 0 44 3 Community 2    ER 



Macedonia 1421 22 71 6 Clusters 0    ER 

Slovenia 1408 1 86 3 Community 0    ER 

Slovakia 1384 3 20 2 Clusters 0    ER 

Cyprus 837 15 20 0 Clusters 0    ER 

Latvia 836 18 13 0 Community 0    ER 

Albania 766 30 30 2 Clusters 0    ER 

Andorra 753 5 41 1 Community 0    ER 

Marino 553 15 41 0 Community 0    ER 

Georgia 517 6 6 0 Community 0    ER 

Montenegro 321 0 7 0 Clusters 2    ER 

Holy_See 10 1 0 0 Sporadic 0    ER 

Kosovo 790 10 22 0 Community 0    ER 

Guernsey 247 0 13 0 Community 1    ER 

Gibraltar 141 0 0 0 Clusters 2    ER 

India 31332 1897 1007 73 Clusters 0    SEA 

Indonesia 9511 415 773 8 Community 0    SEA 

Sri Lanka 619 96 7 0 Clusters 0    SEA 

Maldives 245 31 0 0 Clusters 0    SEA 

Myanmar 150 4 5 0 Clusters 0    SEA 

Nepal 54 2 0 0 Sporadic 0    SEA 

Timor 24 0 0 0 Clusters 5    SEA 

Bhutan 7 0 0 0 Sporadic 6    SEA 

Iran 92584 1112 5877 71 Community 0    EMR 

Saudi 20077 1266 152 8 Clusters 0     EMR 

Egypt 5042 260 359 22 Clusters 0    EMR 

Morocco 4252 132 165 3 Clusters 0    EMR 

Kuwait 3440 152 23 1 Clusters 0    EMR 

Bahrain 2811 88 8 0 Clusters 0    EMR 

Oman 2274 143 10 0 Clusters 0    EMR 

Iraq 1928 81 90 2 Clusters 0    EMR 

Afghanistan 1827 124 60 0 Clusters 0    EMR 

Djibouti 1072 37 2 0 Clusters 0    EMR 

Tunisia 975 8 40 1 Community 0    EMR 

Lebanon 717 7 24 0 Clusters 0    EMR 

Somalia 528 48 28 2 Sporadic 0    EMR 

Jordan 449 0 8 1 Clusters 1    EMR 

Sudan 318 43 25 3 Sporadic 0    EMR 

Libya 61 0 2 0 Clusters 4    EMR 

Syrian 43 0 3 0 Community 1    EMR 

Palestinian 343 1 2 0 Clusters 0    EMR 

USA 983457 22541 50492 1322 Community 0    AR 

Brazil 66501 4613 4543 338 Community 0    AR 

Canada 49014 1698 2766 149 Community 0    AR 

Peru 28699 1182 782 54 Community 0    AR 

Ecuador 24258 1018 871 208 Community 0    AR 

Mexico 15529 852 1434 83 Community 0    AR 

Chile 14365 552 207 9 Community 0    AR 

Dominican_Republic 6416 123 286 4 Community 0    AR 

Panama 6021 242 167 2 Community 0    AR 

Colombia 5597 218 253 9 Community 0    AR 

Argentina 4019 127 197 5 Community 0    AR 

Cuba 1437 48 58 2 Clusters 0    AR 

Bolivia 1014 64 53 3 Clusters 0    AR 

Honduras 702 41 64 3 Clusters 0    AR 

Costa Rica 697 2 6 0 Clusters 0    AR 

Uruguay 620 14 15 0 Clusters 0    AR 

Guatemala 530 30 15 0 Clusters 0    AR 



Jamaica 364 59 7 0 Clusters 0    AR 

El Salvador 345 22 8 0 Clusters 0    AR 

Venezuela 329 4 10 0 Clusters 0    AR 

Paraguay 230 2 9 0 Community 0    AR 

Trinidad 116 0 8 0 Sporadic 1    AR 

Bahamas 80 0 11 0 Clusters 1    AR 

Barbados 80 1 6 0 Clusters 0    AR 

Haiti 76 2 6 0 Clusters 0    AR 

Guyana 74 0 8 0 Clusters 2    AR 

Antigua 24 0 3 0 Clusters 6    AR 

Belize 18 0 2 0 Sporadic  14    AR 

Grenada 18 0 0 0 Clusters 2    AR 

Dominica 16 0 0 0 Clusters 18    AR 

Saint_Kitts 15 0 0 0 Sporadic 8    AR 

Saint_Lucia 15 0 0 0 Sporadic 17    AR 

Saint_Vincent 15 0 0 0 Sporadic 1    AR 

Suriname 10 0 1 0 Sporadic 25    AR 

Puerto_Rico 1400 11 54 1 Clusters 0    AR 

Martinique 175 0 14 0 Clusters 2    AR 

Guadeloupe 149 0 11 1 Clusters 4    AR 

French Guiana 124 13 1 0 Clusters 0    AR 

Bermuda 110 1 6 0 Clusters 0    AR 

Aruba 100 0 2 0  6  Clusters 0    AR 

Cayman Islands 70 0 1 0 Clusters 3    AR 

Virgin_Islands 59 0 4 0 Clusters 1    AR 

Curaçao 16 0 1 0 Sporadic 1    AR 

Algeria 3649 132 437 5 Community 0    AFR 

Cameroon 1705 84 58 2 Clusters 0    AFR 

Ghana 1671 121 16 5 Clusters 0    AFR 

Nigeria 1337 0 40 0 Community 1    AFR 

Guinea 1240 77 7 0 Community 0    AFR 

Ivoire 1183 19 14 0 Clusters 0    AFR 

Senegal 823 88 9 0 Clusters 0    AFR 

Niger 709 8 31 2 Clusters 0    AFR 

Burkina_Faso 638 6 42 0 Community 0    AFR 

Congo 491 20 30 0 Clusters 0    AFR 

Mali 424 16 24 1 Clusters 0    AFR 

Kenya 374 11 14 0 Clusters 0    AFR 

Mauritius 332 0 10 1 Community 2    AFR 

Guinea 315 57 1 0 Clusters 0    AFR 

Tanzania 300 0 10 0 Clusters 4    AFR 

Gabon 238 62 3 0 Clusters 0    AFR 

Rwanda 212 5 0 0 Clusters 0    AFR 

Congo 207 0 8 0 Clusters 1    AFR 

Liberia 141 8 16 0 Clusters of cases 0    AFR 

Madagascar 128 0 0 0 Clusters 2    AFR 

Ethiopia 126 2 3 0 Clusters 0    AFR 

Cabo_Verde 113 7 1 0 Sporadic  0    AFR 

Sierra_Leone 104 5 5 1 Clusters 0    AFR 

Togo 99 0 6 0 Clusters 1    AFR 

Zambia 95 6 3 0 Sporadic 0    AFR 

Uganda 79 0 0 0 Sporadic 1    AFR 

Mozambique 76 0 0 0 Sporadic 2    AFR 

Guinea-Bissau 73 0 1 0 Sporadic  1    AFR 

Eswatini 71 6 1 0 Sporadic  0    AFR 

Benin 64 0 1 0 Sporadic 2    AFR 

Chad 52 6 2 2 Sporadic  0    AFR 



CAR 50 8 0 0 Sporadic 0    AFR 

Eritrea 39 0 0 0 Sporadic 10    AFR 

Malawi 36 0 3 0 Sporadic 1    AFR 

South_Sudan 34 28 0 0 Sporadic 0    AFR 

Zimbabwe 32 1 4 0 Sporadic 0    AFR 

Angola 27 0 2 0 Sporadic 1    AFR 

Botswana 23 1 1 0 Sporadic  0    AFR 

Namibia 16 0 0 0 Sporadic 23    AFR 

Burundi 15 0 1 0 Sporadic  2    AFR 

São_Tomé 11 3 0 0 Sporadic  0    AFR 

Seychelles 11 0 0 0 Sporadic  22    AFR 

Gambia 10 0 1 0 Sporadic  8    AFR 

Mauritania 7 0 1 0 Sporadic 18    AFR 

Mayotte 460 27 4 0 Clusters 0    AFR 

Réunion 418 0 0 0 Clusters 1    AFR 

run; 

proc Univariate Plots; 

var ltcases; 

run; 

 

proc sort; 

by country; 

run; 

data covid2; 

input Country$ Pop; 

cards; 

Aruba 105845 

Afghanistan 37172386 

Angola 30809762 

Albania 2866376 

Andorra 77006 

UAE 9630959 

Argentina 44494502 

Armenia 2951776 

Samoa 55465 

Antigua 96286 

Australia 24982688 

Austria 8840521 

Azerbaijan 9939800 

Burundi 11175378 

Belgium 11433256 

Benin 11485048 

Burkina_Faso 19751535 

Bangladesh 161356039 

Bulgaria 7025037 

Bahrain 1569439 

Bahamas 385640 

Bosnia_H 3323929 

Belarus 9483499 

Belize 383071 

Bermuda 63973 

Bolivia 11353142 

Brazil 209469333 

Barbados 286641 

Brunei 428962 

Bhutan 754394 

Botswana 2254126 



CAR 4666377 

Canada 37057765 

Switzerland 8513227 

Chile 18729160 

China 1392730000 

Cote_Ivoire 25069229 

Cameroon 25216237 

Congo 84068091 

Colombia 49648685 

Comoros 832322 

Cabo_Verde 543767 

Costa_Rica 4999441 

Cuba 11338138 

Curacao 159800 

Cyprus 1189265 

Czech10629928 

Germany 82905782 

Djibouti 958920 

Dominica 71625 

Denmark 5793636 

Algeria 42228429 

Ecuador 17084357 

Egypt 98423595 

Spain 46796540 

Estonia 1321977 

Ethiopia 109224559 

Finland 5515525 

Fiji 883483 

France 66977107 

Micronesia 112640 

Gabon 2119275 

UK 66460344 

Georgia 3726549 

Ghana 29767108 

Gibraltar 33718 

Guinea 12414318 

Gambia 2280102 

Guinea-Bissau 1874309 

Equatorial_Guinea 1308974 

Greece 10731726 

Grenada 111454 

Greenland 56025 

Guatemala 17247807 

Guam 165768 

Guyana 779004 

Honduras 9587522       

Croatia 4087843 

Haiti 11123176 

Hungary 9775564 

Indonesia 267663435 

India 1352617328 

Ireland 4867309 

Iran 81800269 

Iraq 38433600 

Iceland 352721 

Israel 8882800 

Italy 60421760 



Jamaica 2934855 

Jordan 9956011 

Japan 126529100 

Kazakhstan 18272430 

Kenya 51393010 

Cambodia 16249798 

Kiribati 115847 

St_Kitts 52441 

Korea 51606633 

Kuwait 4137309 

Lao 7061507 

Lebanon 6848925 

Liberia 4818977 

Libya 6678567 

St_Lucia 181889 

Liechtenstein 37910 

Sri_Lanka 21670000 

Lesotho 2108132 

Lithuania 2801543 

Luxembourg 607950 

Latvia 1927174 

St_Martin 37264 

Morocco 36029138 

Monaco 38682 

Moldova 2706049 

Madagascar 26262368 

Maldives 515696 

Mexico 126190788 

Macedonia 2082958 

Mali 19077690 

Malta 484630 

Myanmar 53708395 

Montenegro 622227 

Mongolia 3170208 

Mozambique 29495962 

Mauritania 4403319 

Mauritius 1265303 

Malawi 18143315 

Malaysia 31528585 

USA 364290258 

Namibia 2448255 

Caledonia 284060 

Niger 22442948 

Nigeria 195874740 

Nicaragua 6465513 

Netherlands 17231624 

Norway 5311916 

Nepal 28087871 

Nauru 12704 

New_Zealand 484100 

Oman 4829483 

Pakistan 212215030 

Panama 4176873 

Peru 31989256 

Philippines 106651922 

Palau 17907 

PNG 8606316 



Poland 37974750 

Puerto Rico 3195153 

Korea 25549819 

Portugal 10283822 

Paraguay 6956071 

French_Polynesia 277679 

Qatar 2781677 

Romania 19466145 

Russian Federation 144478050 

Rwanda 12301939 

Saudi 33699947 

Sudan 41801533 

Senegal 15854360 

Singapore 5638676 

Solomon_Islands 652858 

Sierra_Leone 7650154 

El_Salvador 6420744 

San _Marino 33785 

Somalia 15008154 

Serbia 6982604 

Sudan 10975920 

Sao_Tome 211028 

Suriname 575991 

Slovakia 5446771 

Slovenia 2073894 

Sweden 10175214 

Eswatini 1136191 

Seychelles 96762 

Syria 16906283 

Chad 15477751 

Togo 7889094 

Thailand 69428524 

Tajikistan 9100837 

Turkmenistan 5850908 

Timor-Leste 1267972 

Tonga 103197 

Trinidad 1389858 

Tunisia 11565204 

Turkey 82319724 

Tuvalu 11508 

Tanzania 56318348 

Uganda 42723139 

Ukraine 44622516 

Uruguay 3449299 

Uzbekistan 32955400 

St_Vincent 110210 

Venezuela 28870195 (U.S.) 106977 

Vietnam 95540395 

Vanuatu 292680 

Samoa 196130 

Kosovo 1845300 

Yemen 28498687 

South_Africa 57779622 

Zambia 17351822 

Zimbabwe 14439018 

run; 

proc sort; 



by country; 

run; 

data covid_new; 

merge covid_19 covid2; 

by country; 

lpop=log(pop); 

rpop=pop**0.5; 

if lpop='.' then delete; 

run; 

proc corr; 

var srcasen tccases lsrcasen ltcases; 

run; 

proc glimmix data=covid_new method=laplace; 

   class  country region trans_type; 

   model srcasen =trans_type  X  / 

                     s dist=Poisson offset=lpop; 

random int/subject=region type=vc; 

random int/subject=country(region) type=vc; 

covtest / wald; 

run; 

 

proc glimmix data=covid_new method=laplace; 

   class  country region trans_type; 

   model ltcases =trans_type X  / 

                     s dist=Normal; 

random int/subject=region type=vc; 

random int/subject=country(region) type=vc; 

covtest / wald; 

run; 

data covid19; 

   length dist $7; 

   set covid_new; 

   response = srcasen;  

   dist     = "Poisson"; 

   offset=lpop; 

   output; 

   response = ltcases; 

   dist     = "Normal"; 

   output; 

run; 

proc glimmix data=covid19 method=Laplace; 

   class  country region dist trans_type; 

   model response = dist dist*trans_type dist*X  / 

                    noint s dist=byobs(dist); 

random int/subject=region type=cs; 

random int/subject=country(region) type=cs; 

   output out=stat student=r pred=p; 

   covtest / wald; 

run; 

proc gplot; 

plot r*p/vref=2.58 vref=-2.58; 

Title 'Plot of Studentized Residuals and 99% CI versus Predicted Values'; 

run; 
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Joint Modeling of Two Count Variables using a Shared Random Effect Model in the 

presence of Clusters for Complex Data  

Abstract 

In epidemiology, it is often the case that two or more correlated count response variables are 

encountered. Under this scenario, it is more efficient to model the data using a joint model. Besides 

if one of these count variables has an excess of zeros (spike at zero) the log link cannot be used in 

general. The situation is more complicated when the data is grouped into clusters. A Generalized 

Linear Mixed Model (GLMM) is used to accommodate this cluster covariance. The objective of 

this research is to develop a new modeling approach that can handle this situation. The method is 

illustrated on a global data set of Covid 19 patients. The important conclusions are that the new 

model was successfully implemented both in theory and practice. A plot of the residuals indicated 

a well-fitting model to the data.  

Keywords: Joint Model, Generalized Linear Mixed Model (GLMM), Cluster, Spike at zero, 

random effects, Covid 19 

 

1. Introduction 

1.1 Background 

In epidemiological and health studies often several correlated count responses are encountered [4] 

[6]. This type of data is often found to occur within groups (clusters). In this case, it is more 

efficient to model these count responses jointly rather than model each response separately. 

Fernando and Sooriyarachchi [4] use Generalized Linear Mixed Modeling (GLMM) with random 

cluster effects for this scenario which is now quite well developed. In this research, a more difficult 
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problem involving four complexities that can be encountered with count data is considered. The 

first is the presence of a huge number of zero counts resulting in an enormous spike at zero [15]. 

The zero-inflated Poisson is an option for modeling such data but in the context of joint models 

could have convergence problems [2]. The second problem is when the counts are non-zero but 

huge. Neither the Poisson nor the Negative Binomial converges especially in the case of joint 

models [9]. The third situation is the presence of a negative correlation between responses [19]. 

Even though there are indirect methods developed in the literature to handle this, these have been 

developed only for binary, ordinal, and continuous data [19]. The fourth problem is related to 

cluster-specific covariates which occur at different levels of the hierarchy [5]. Rizopoulos [18] has 

dealt with this for survival and normal responses but not for two count variables. In the case of the 

first problem, the literature provides a solution for univariate models [15]. In the case of the second 

problem log transforming the counts and modeling the transformed values as Normal often works 

[13, 16]. In the situation of the third problem GLMM with common random effects has been seen 

to work for survival and count joint responses [19]. In the final problem multilevel modeling for 

high dimensional problems has been seen to work for bivariate binary problems [5].  

      1.2 Objectives 

The primary objective of this research is to develop a new model for the scenario described in 

section 1.1. The secondary objective is to apply the model to a suitable set of data. 

1.3 Brief description of Methods 

The joint model is developed for a Poisson-Normal joint distribution. A Generalized Linear Mixed 

Model with Maximum Likelihood Estimation and Laplace approximation for the marginal             

log-likelihood was used for this purpose [7]. Two random effects to incorporate two different 
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cluster effects were used. These random effects are used to join the two responses. The covariance 

structure used was compound symmetry. It was assumed that both responses have the same random 

variance. 

1.4 Data for the example 

 The data for the example is related to Covid 19 and the relevant details were obtained from the 

website of the Epidemiology Unit of Sri Lanka [10]. The two, count responses pertained to the 

expected number of days elapsed after the last corona case and the total number of corona cases. 

The former had a spike at zero and the latter had very large counts. There was one explanatory 

variable, namely, the type of transmission of the cases. There were 144 countries and this database 

was merged with the population size database given by the UN website [11]. 

1.5 Structure of the Paper 

Section 1 consists of an introduction to the problem, objectives, a brief description of methods, 

and an explanation of the data. Section 2 is made up of a literature review. In section 3 the new 

model is developed. Section 4 gives the example and the discussion consists of section 5 followed 

by references. 

 

2. Literature Review 

2.1 Joint modeling of two count variables 

In epidemiology, often two correlated count variables are encountered, such as the incidence of 

the disease and the platelet count in dengue, the incidence of the disease and white blood cell 

counts in Japanese encephalitis, the incidence of Leptospirosis and the count of serovar-specific 



4 
 

antibodies to name a few examples. As most of these diseases also depend on the climate and thus 

on the geographical region the region happens to be a cluster variable. Many zero counts are 

possible in regions where the weather is not conducive to the disease. Thus resulting in a SAZ. 

The second variable is usually related to huge counts and the weather parameters are cluster level 

variables. In the first example given the correlation between the two counts is negative with high 

dengue counts being related to low platelet counts. Under this epidemiological scenario the major 

characteristics are two count variables, cluster variation, one count variable with a SAZ and the 

other count variable with huge counts, correlated counts with the more challenging being that the 

counts are negatively correlated. Thus each of these characteristics are reviewed in the next 

sections. 

Kochelerkota and Kochelerkota [14] and Ophem [17] give a detailed literature review of this 

situation. Gurmu and Elder [6], discuss the joint modeling of two count variables when these 

variables are negatively correlated. They mention that in this scenario the bivariate Poisson and 

the bivariate negative binomial cannot be used to model the data. They consider a two-factor 

framework where dependence between the count variables is modeled using correlated unobserved 

heterogeneity components. Their article uses semi-parametric methods for the estimation of a 

mixture of count models that include negatively correlated counts. Aitchinson and Ho [1] 

particularly discuss the case of negatively correlated count variables where they use a Poisson-

Lognormal mixture to model two count variables with a negative correlation.  

However, their methods [1] [6] do not take in to account the adjustments for clustering, a spike at 

zero, huge counts, and cluster-level covariates. 

Hapugoda and Sooriyarachchi [8] develop a joint model using a single shared random effect to 

model survival and count responses combining the discrete time hazard model and Poisson model. 
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This method does not take in to account high dimensional data and has only one random effect. 

The model [8] though considering clustered data is a joint model for binary and count data and 

does not accommodate an excess of zeros nor huge counts. It can, however, handle a negative 

correlation. 

Sunethra and Sooriyarachchi [19] develop joint models using two separate random effects to model 

survival and count data which are negatively correlated. They use the lognormal distribution to 

model the survival data and the Poisson distribution to model the count data. However, they [19] 

do not consider the case of excess zeros nor huge counts. 

Wickremarachchi (unpublished B.Sc. thesis, 2017) [20] develop a bivariate binomial model in the 

presence of clusters. This is modeled using multilevel modeling. Here a different technique to 

Hapugoda and Sooriyarachchi [8] and Sunethra and Sooriyarachchi [19] is used to model the 

correlation within clusters. It is another option for the cluster scenario. This technique is multilevel 

modeling. This method [20] does not accommodate negative correlation, excess zeros, high 

dimensional data nor huge counts. 

2.2 Use of Random Effect Models for Joint Model Development 

A pioneer of random effect models for joint model development is Rizopoulos [18]. He developed 

joint models for survival and repeated measures responses considered to be normally distributed. 

Sunethra and Sooriyarachchi [19] give a detailed review of this situation. They consider both the 

case of positive, and negative correlation between two response variables. For the case of positive 

correlation, they discuss shared random effect models and for negatively correlated responses they 

consider separate random effect models. However, his work [18] is purely for joint survival and 



6 
 

normal longitudinal models. He has not considered count responses and so his work does not 

discuss an excess of zeros and huge counts.   

Similar to Sunethra and Sooriyarachchi [19], in this paper, the author examined the joint modeling 

of two count variables using shared random effects with two random effects at two different levels. 

The method used in this research is a technique that combines the methods of Sunethra and 

Sooriyarachchi [19] with that of Aitchinson and Ho [1]; Lorenz, Jenkner et al. [15], and                       

G. Fernando and Sooriyarachchi [5].  

This current approach uses two shared random effects as in [19], uses appropriate methods to 

incorporate negative correlation for Poisson-Lognormal mixtures as in [2], adjusts for a spike at 

zero as in [15], and extends the problem to 3-dimensional data as in [5]. Apart from combining 

these methods, further extensions have been made by looking at significance tests for the random 

effects, extensions were also made to [19] and [5] where the survival and count joint model and 

the univariate binary model respectively were changed to a joint count model. Finally [15] was 

extended from a univariate model to a bivariate model. 

2.3 The case of a peak (spike) at zero 

When in addition to negative correlation if one of the count variables has a spike at zero, neither 

the zero-inflated Poisson nor the zero-inflated negative binomial usually converge [2]. Lorenz, 

Jenkner et al. [15] introduced four methods to handle this case. They discussed the case occurring 

often in Epidemiological and Clinical Research where variables are often semi-continuous with 

several patients often having exposure zero and a continuous distribution among those exposed. 

This is referred to as a spike at zero (SAZ). They illustrated their procedures on a German Breast 

Cancer Study Group data (GBSG). Their method involves dichotomizing the SAZ variable into a 
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binary variable (X) with the two levels relating to the zeros and non-zeros. Then the binary 

information is combined with the positive continuous variables. This information is combined into 

one variable in the standard technique to give by default the linear component. Using the approach 

of Lorenz, Jenker et al. [15] in our study we take the first count variable (srcasen) split into two, 

one a binary variable for zeros and non-zeros and the other a continuous srcasen variable and the 

two srcasen variables are treated as one prognostic factor in the model. Both variables are tested 

jointly in the model. 

Expectation [Response] (combined variable) = Exp (βZ + γX) where Z consists of the other 

explanatory variables and the intercept (for intercept β=1) and X consists of the binary explanatory 

variable. There is no intercept in this model. If the Response is a count it can be taken as having a 

Poisson distribution with a log link. Here β and γ are the unknown coefficients of Z and X 

respectively.  

The authors of this paper [15] do not consider hierarchical data in the form of clusters nor huge 

counts. Also, they only consider the univariate case. 

The authors [15] have also mentioned about some discrepancies in the method and the way of 

getting over these discrepancies. According to them, “Modeling such SAZ variables is challenging 

and there are both statistical problems and problems conserning interpretation arising from this 

situation. Readers are referred to paper [15] for more information on the overcoming of these 

problems. 

 

 2.4 The case of cluster effects 

When the data is hierarchical we refer to this as multilevel data. We consider here the case where 

there are three levels. The third level is a large cluster within which lies a small cluster referred to 
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as the second level within which lies two correlated count responses referred to as the first level. 

If the correlation within a cluster is significant then the model cannot be fitted using standard 

models. This correlation has to be taken in to account. [5] 

 

2.5 Methods used in this research 

Here a shared random effects joint model is used to model two negatively correlated counts using 

the Poisson-Normal mixture. A spike at zero is taken into consideration also. The model is 

developed within the framework of hierarchical models. The method used in this research is a 

technique that combines the methods of Sunethra and Sooriyarachchi [19] with that of Aitchinson 

and Ho [1]; Lorenz, Jenkner et al. [15], and G. Fernando and Sooriyarachchi [5]. This combination 

is not found in the literature and therefore, is a novel development. 

 

3. Theory 

Consider the method of Hapugoda and Sooriyarachchi [8] where the Procedure Glimmix in SAS 

9.4 is used to fit a shared parameter joint model to a survival and count response. The model fitted 

is a Generalized Linear Mixed Model (GLMM) with one random effect representing a single 

cluster. This method will be modified for this situation. Here we use a Poisson model with an 

adjustment for a spike at zero for one count variable and the other count variable is log-transformed 

and modeled as a Normal response variable [1][16]. The correlation matrix is modeled as of type 

compound symmetry. The method of estimation used was the Maximum Likelihood with Laplace 

Approximation of the marginal log-likelihood [7]. In this research, a shared parameter joint model 
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for joining the two count responses is fitted. The model fitted is a Generalized Linear Mixed Model 

(GLMM) with two random effects representing two sets of clusters. 

 

3.1 Poisson Regression Model for clustered data 

Suppose 𝑦𝑖𝑗1 is the first observed count for the ith small cluster in level 2 within the jth third level 

cluster where 𝑦𝑖𝑗1~ Poisson (µ𝑖𝑗1) and µ𝑖𝑗1 is the mean of the Poisson distribution for the 1st 

observation of  level 1 within the ith 2nd level unit within the jth third level unit. 𝐸𝑖𝑗1 is the Expected 

count or offset [12]. The Z𝑖𝑗 are the predictors and 𝛽0i𝑗= 𝛽0+𝑢0i𝑗 + v0j is the random intercept where 

𝛽0 is a fixed component and 𝑢0i𝑗 is a random component for cluster-level 2 (intercept) and v0j is a 

random component for cluster-level 3. Let Xij be the binary variable to adjust for the spike at zero. 

Then a three-level random intercept Poisson Regression model can be given by  

log (µ𝑖𝑗1 ) = log (𝐸𝑖𝑗1) + 𝛽0i𝑗 + 𝛽Z𝑖𝑗 + γ Xij where 𝛽0i𝑗 = 𝛽0 + u0ij  + v0j  and u0ij ~ N(0, 𝜎𝑢
2) and v0j 

~ N(0, 𝜎𝑣
2).                                                                                                               (1) 

To classify a count as either zero or not, a binary variable X is added to the model. It is assessed 

in a two-stage procedure to determine whether the binary variable and/or the continuous function 

for the positive part is required for a suitable fit [15]. 

 

 

 

 

3.2 The Normal model for log count clustered data 

Let 𝑦𝑖𝑗2 be the log-transformed second count variable for the ith small cluster in level 2 within the 

jth third level cluster where 𝑦𝑖𝑗2 ~ Normal (µ𝑖𝑗2, σij2
2) where µ𝑖𝑗2 is the mean of the Normal 

distribution for the 2nd observation of level 1 within the ith 2nd level unit within the jth third level 
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unit and σij2
2 is the variance of the Normal distribution for the 2nd observation of level 1 within the 

ith second level unit within the jth third level unit. The Z𝑖𝑗 are the predictors and 𝛽0i𝑗= 𝛽0+𝑢0i𝑗 + v0j 

where 𝑢0i𝑗 and v0j are as in section 3.1. Then a three-level random intercept Normal Regression 

model can be given by  

µ𝑖𝑗2 = 𝛽0i𝑗 +𝛽Z𝑖𝑗 + γ Xij where 𝛽0i𝑗= 𝛽0+ u0ij +  v0j   and u0ij ~ N(0, 𝜎𝑢
2) and v0j ~ N(0, 𝜎𝑣

2)                     

                                                                                                                                               (2) 

3.3 The joint model for clustered data 

The responses of analysis are Yij1 (Poisson – Count 1) and Yij2 (Normal – Log transformed count 

2). The suffixes i and j, are as defined before. Variables that impact Y = (Y1, Y2) are the explanatory 

variables (X𝑖𝑗 and Z𝑖𝑗) as defined before i=1,2,…,I where I is the number of small clusters and 

j=1,2,…., J where J is the number of large clusters. To formulate a joint model, Generalized Linear 

Model (GLM) can be used to form marginal models for each response by considering mean 

E(Yijk/Xij, Zij) and variance Var(Yijk/Xij, Zij) where k=1,2. The approach to link the responses is by 

structuring a covariance matrix Var(Yijk/Xij, Zij) to include potential correlations.[16]. The random 

effects are assumed to be the same for both responses so this is a shared random-effects model.  

In GLM lk (E(Yijk/Xij, Zij)) = 𝑋𝑖𝑗𝑘
′𝛽𝑘 + 𝑍𝑖𝑗𝑘

′𝛾𝑘 , k=1,2 where i,j denotes each record from each 

ith small cluster within each jth large cluster and lk is the link function. Here, l1(u) is the log link 

and l2(u)  is the identity link. GLIMMIX is used to estimate two marginal models jointly. 

A structural formulation of the model is given as: 

l1(𝑌𝑖𝑗1
′ ) =Log (µi𝑗1) = log (𝐸𝑖𝑗1) + 𝛽0i𝑗 +𝛽Z𝑖𝑗 + γ Xij where 𝛽0i𝑗= 𝛽0+ u0ij  + v0j  and u0ij ~ N(0, 𝜎𝑢

2)

 and v0j ~ N(0, 𝜎𝑣
2).                       (3) 
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and 

l2(𝑌𝑖𝑗2
′ ) = (μij2) = ϑ0i𝑗 + ϑX𝑖𝑗 + δ Xij where ϑ 0i𝑗= ϑ 0+ u0ij + v0j   and u0ij ~ N(0, 𝜎𝑢

2) and v0j ~ N(0, 𝜎𝑣
2)                                                                                                                                           

(4)  

          Here k=1,2 and i=1(1) nj    and j=1(1)m  where nj  is the number of small clusters within big 

cluster j and m is the number of big clusters.                                 

       For simplicity, we assume that both sets of random effects are the same (u0ij and v0j) and have 

the same variance(𝜎𝑢
2 𝑎𝑛𝑑 𝜎𝑣

2 respectively). The joint model variance-covariance matrix,        Var-

Cov (Yij1, Yij2) is of the form  [
𝜎1

2 𝜌12𝜎1𝜎2

𝜌12𝜎1𝜎2 𝜎2
2 ]   where:                                 

𝜎2
2 =  𝜎𝑢 

2 +𝜎𝑣
2 + 𝜎2 and 𝜎2  is the variance of the error term in the regression. 

Here 𝜎1
2 can be derived using the methods of Sunethra et al. (2020) [19].  The correlation 

between the Yij1   and   Yij2 is taken to be 𝜌12 .  It is assumed that the u0ij’s are independent of the 

v0j’s. GLIMMIX will structure the variance-covariance matrix of Y = (Y1, Y2) as in Hapugoda et 

al. [7]. The development of the joint log-likelihood and thereby the joint model is given in detail 

in Sunethra and Sooriyarachchi [19].  

 

4. Example 

4.1 Description of the data set 

     The data was extracted from the website of the Epidemiology Unit of Sri Lanka 

(http://www.epid.gov.lk/web/index.php?option=com_content&view=article&id=225&lang=en) 

[9] and is related to Covid 19. The data is global and consists of 144 countries. The population 

http://www.epid.gov.lk/web/index.php?option=com_content&view=article&id=225&lang=en
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sizes of each country were obtained from a United Nations (UN) database 

(https://population.un.org/wpp/Download/Standard/Population/)[10]. The data from the 

Epidemiology unit was made up of the country, the geographical region, the days elapsed from the 

last Covid 19 case in the country, the total number of Covid 19 cases in the country, and the type 

of spread of the virus. There were three types of spread, namely, clusters, community, and 

sporadic. The variable, days lapsed from the last Covid 19 case in the country is a count response 

variable with a spike at zero. Therefore, a binary variable X was created to differentiate the zeros 

from the non-zeros. The variable, the total number of Covid 19 cases in the country was another 

count response with huge numbers and no zeros. The two explanatory variables were X and the 

type of spread of the virus (Z). There were two cluster variables, namely country, and region.  

Table 1 gives details of the data. 

4.2 Preliminaries for Modeling 

Before fitting models, the distribution of the responses and their correlation needs to be 

determined. For the first response related to the days elapsed from the last Covid 19 case in the 

country which has a spike at zero, based on Lorenz, Jenkner et al. [15] a Poisson model with an 

adjustment for the spike at zero was selected. For the total number of Covid 19 cases in the country, 

another Poisson Model could not be used as the two response variables were negatively correlated. 

Based on Aitchinson and Ho [1] a Lognormal model was used for the second response with a view 

to joint modeling. As the counts in the second response were extremely large and therefore, to 

avoid convergence problems the second response was log-transformed and a Normal model was 

fitted to impose a lognormal model. Figure 1(a) gives a histogram of the log-transformed second 

response and Figure 1(b) gives a Normal probability plot of the transformed second response. 

                                                       Table 1 should come here. 

https://population.un.org/wpp/Download/Standard/Population/
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Fig 1(a) and Fig 1(b) should come here. 

Figure 1 (a) shows a symmetric histogram close to a Normal distribution while figure 1(b) is close 

to a straight line except at the lower extreme. Based on these figures a Normal model is selected 

as the Normal distribution is usually quite robust to small departures from Normality [16].  

The two responses are labeled srcase (response 1) and ltcases (response 2) and the correlation 

between these two variables is -0.4894 and is significant at 0.01%. Before modeling according to 

Lorenz, Jenkner et al. [15] a value of one is added to srcase in order to attain convergence. This 

new variable is labeled srcasen. As the correlation is a large negative value srcasen is modelled as 

Poisson after adjusting for the zeros as in Lorenz, Jenkner et al. [15] and following Aitchinson and 

Ho [1] the log-transformed second response (ltcases) is modelled as a Normal. 

4.3 Univariate Modeling 

4.3.1. Modeling srcasen using a univariate random effect model with two random effects 

Here we take srcasen to have a Poisson response and the explanatory variables are taken to be the 

type and X. The random effects are taken to be region and country nested within the region. The 

link is taken as a log and the offset is taken to be the log of the population size. The type of 

correlation structure used is variance components. The method of estimation is the maximum 

likelihood with Laplace approximation of the marginal likelihood. In model fitting, the type 

variable and X are both significant. The parameter estimates can be interpreted as follows. When 

type=community, the expected number of days elapsed after the last case, decreases by a ratio of 

0.162 compared to type=sporadic. The type=clusters is not significant. When srcase is non-zero 

the expected number of days elapsed after the last case increases by a ratio of 17.63 compared to 
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when srcase is zero. The variance parameter estimate of the region random effect is 0.3805. The 

variance parameter estimate of the country (region) random effect is 2.9052. While the country 

(region) variance parameter is significant the region variance parameter is not significant. The AIC 

of the fitted model is 749.37 and the Z value given by the Wald test of the two variance parameters 

is 1 and 6.56 respectively resulting in p-values of 0.1586 and <0.0001 respectively. 

4.3.2. Modeling ltcase using a univariate random effect model with two random effects 

Here we take ltcase the log-transformed response 2 to have a normal distribution. As before the 

explanatory variables are taken to be type and X. The random effects are taken to be region and 

country nested within the region. The link is taken as identity. The type of correlation structure 

used is variance components. The method of estimation is the maximum likelihood with Laplace 

approximation of the marginal log-likelihood. Both the type variable and X are significant in this 

model. The parameter estimates can be interpreted as follows. When type=clusters the ratio of the 

total number of cases increases by 6.63 compared to sporadic type. When type=community the 

ratio of the total number of cases increases by 58.99 compared to sporadic type. When X is non-

zero the ratio of the total number of cases decreases by 0.1617 compared to the case when X is 

zero. The variance parameter estimate of region random effect is 0.3364. The variance parameter 

estimate of the country (region) is 1.5817. Here the country (region) random effect is significant 

while the region random effect is not significant. The AIC of the fitted model is 538.84 and the Z 

value given by the Wald test of the two variance components is 1.19 and 3.14 resulting in p-values 

of 0.117 and 0.0008 respectively.  
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4.4 Joint Modeling of srcasen and ltcases using Poisson and Normal distributions 

respectively 

Here we build a joint model taking srcasen to have a Poisson distribution and ltcases to have a 

normal distribution. A random-effects model with shared random effects is used to fit this joint 

model. Two random effects one to represent the correlation between countries within regions and 

the other to represent the correlation between responses within countries were used. The 

covariance structure used was compound symmetry. The method of estimation was maximum 

likelihood with Laplace approximation of the marginal log-likelihood. The parameter estimates 

can be interpreted as follows. Both type and X were significantly associated with both responses 

srcasen and ltcases. For srcasen the ratio of the number of days after the last case for type=clusters 

reduces by 0.5612 compared to type=sporadic and for type=community it decreases by 0.4982 

compared to type=sporadic. When X is non zero the rate increases by 4.833 compared to when X 

is zero. For ltcases the ratio of the total number of cases increases by 7.54 for type=cluster 

compared to type=sporadic and increases by 59.81 for type=community compared to 

type=sporadic. When X is non zero the total number of cases reduces by 0.1572 compared to when 

X=0. The variance-covariance matrix of the region is 

[
0.0081 0.0074
0.0074 0.0081

] 

And the Variance-Covariance matrix of the country (region) is 

[
0.4101 −0.2082

−0.2082 0.4101
] 

As in the univariate case, the region random effect is not significant while the country (region) 

random effect is highly significant. As seen before the correlation between responses within 



16 
 

countries is negative. The AIC of this model is 1043.34 and the Z value given by the Wald test of 

the two variance components is 0.34 and 8.04 resulting in p-values 0.3667 and <0.0001 

respectively.  

 

4.5 Comparison of the Univariate and Joint Models 

Table 2 gives the fit statistics of the two univariate and the joint models. 

Table 2 should come here. 

By comparing the estimates given in table 2, it is evident that the joint model has a better 

performance as its AIC was lower (1043.34) than the sum of the AICs of the univariate models 

(1288.21) and the Z value given by the Wald test of the variance parameter of the Country (Region) 

effect of the joint model was higher than those of the univariate models.  

The parameter estimates for the normal component of the joint model are close to the parameter 

estimates of the corresponding normal univariate model. However, the Poisson components are 

very different. The difference in the parameter estimates of the univariate and joint model is due 

to the joint model taking account of the correlation between responses while the univariate models 

are unadjusted for correlation. 

 

4.6 Examining the fit of the joint model 

To examine how good the fitted joint model is the students’ residuals were plotted against the 

predicted values. The 99% horizontal confidence bands were also superimposed on the same plot 

at y=-2.58 and y=2.58. Figure 2 gives this plot. Of the 288 observations all but 6 observations lay 

within the 99% confidence bands. Even the 6 observations outside the bands were small outliers. 
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Also, there is no other pattern in the plot except some lines. The covariates in this model, Dist 

(pertaining to distribution) and X (Pertaining to the SAZ variable) are binary/dichotomous and Z 

(pertaining to type) is categorical. Collett [3] explains that wherever there are binary/dichotomous 

independent predictors in the model these linear patterns are a usual occurrence. This indicates a 

satisfactory fit of the model. 

                Figure 2 should come here. 

4.7 Comparing the developed joint model with the traditional joint model 

Here we compare the newly developed joint model with the traditional joint model ignoring the 

methods developed for the excess of zeros and huge counts. In the traditional model count 

response, 1 is modeled as a Poisson variable while count response 2 is modeled as a lognormal 

variable. The AIC is smaller (1026.70) in the traditional model compared to the newly developed 

model (1043.34). However, these two AIC values cannot be directly compared as these are based 

on two slightly different data sets due to the newly developed model including the additional binary 

variable. The Z statistic given by the Wald test for the Country (Region) variance component is 

much less for the traditional model (5.35) compared to the newly developed model (8.04). The 

Studentized residual plot for the traditional model shows 11 points outside the 99% confidence 

bands while the newly developed model shows only 6 points outside these bands. Also, the width 

of the residual plot on the vertical axis is much wider for the traditional model compared to the 

newly developed model indicating that the traditional model has bigger outliers. The only patterns 

here are linear and curvy linear. The covariates in this model, are Dist (pertaining to distribution) 

is binary/dichotomous and Z (pertaining to type) is categorical. Collett [3] explains that wherever 

there are binary/dichotomous independent predictors in the model then these patterns are a usual 
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occurrence and therefore, it is no surprise that the plot contains some linear and curvy-linear 

patterns [3]. This is shown in Figure 3.   

Figure 3 should come here. 

There are three instances where the newly developed model is better than the traditional model. 

So overall the newly developed model is superior to the traditional model. 

5. Discussion 

5.1 Important Conclusions 

When there are two counts and one has a spike at zero and the other has very large non zero counts 

the former variable can be modeled as a Poisson random variable with log link using the technique 

of  Lorenz, Jenkner et al. [15] successfully. The other variable can be log-transformed and modeled 

as a Normal response with an identity link.  

When these two variables are highly negatively correlated these cannot be jointly modeled using 

a bivariate Poisson or bivariate negative binomial distribution. Thus transforming one variable is 

the only option. Aitchinson and Ho [1] suggest a way around this situation and they have modeled 

one count using the lognormal distribution. As there is a problem of heterogeneity in our second 

variable our joint model gives a better fit when log-transformed and modeled as a Normal response. 

A Generalized Linear Mixed Model (GLMM) in the form of Hapugoda and Sooriyarachchi [8] 

can be used to fit this joint model with Maximum Likelihood Estimation (MLE) and Laplace 

Approximation of the marginal log-likelihood. 

This procedure was illustrated on an example related to a covid 19 data set. Two random effects 

of which one was a nested effect were used in the joint model [19]. The type of covariance matrix 
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used was compound symmetry [8]. The explanatory variable Type indicated that the expected 

number of days elapsed after the last covid 19 cases was significantly less for cluster and 

community type of spreading of the disease compared to a sporadic type of spreading. For the log 

count of the total number of covid 19 cases, there were significantly more cases when the spread 

type was cluster and community compared to sporadic type.  

When the joint model was compared to two univariate models, the AIC of the joint model was 

nearly 250 less than the AIC of the sum of the two univariate models. In addition, the standard 

error of the variance parameters of the variance-covariance matrix was very much lower in the 

joint model compared to the two univariate models [8]. The explanatory variables X and type were 

both significant for both responses in the joint model. Of the two random effects, only the nested 

effect country (region) was significant and the random effect region was not significant.  

The plot of the studentized residuals versus the predicted value was drawn to examine the goodness 

of fit of the joint model. Of 288 observations all except 6 observations were within the 99% 

confidence bands. Even these 6 observations resulted in small outliers. The complex scenario was 

successfully modeled using the model proposed.   

5.2 Comparing this research with what is known in the literature 

Comparing our method with Lorenz, Jenkner et al. [15] our method was as successful as theirs for 

a much more complicated scenario. When comparing our research with Fernando and 

Sooriyarachchi [4] they had a positive correlation which was modeled by a bivariate negative 

binomial distribution. However, as our responses were negatively correlated that research could 

not be followed. When comparing our research with Hapugoda and Sooriyarachchi [8] their 

research modeled survival and count data and the count variable did not have a spike at zero and 
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had only one random effect. When comparing our research with Sunethra and Sooriyarachchi [19] 

they too developed a joint model for survival and count variables where they did not have a spike 

at zero. They used a separate random effect model while we used a shared random effect model 

with the transformation of one variable. When comparing the newly developed model with the 

traditional model, overall the newly developed model was superior based on the example used. 

 

Here in this research, it should be mentioned that log transforming the second count variable and 

modeling it as normal is the same as modeling the untransformed second count variable using the 

lognormal distribution.  

The methods used here build upon a combination of ideas from the literature and these ideas have 

never been put together before as explained in the literature review. Therefore, the methods 

developed here and the example analyzed is a novel technique for the scenario considered. 

5.3 Limitations of the study 

In the example, there was only one explanatory variable in the study. The offset variable was the 

log of the population size. For some countries there were no values for the population so these 

countries had to be dropped from the analysis. Most distribution combinations for the two 

responses did not converge. Both zero-inflated Poisson and Zero-inflated Negative Binomial did 

not work for the count response with a spike at zero.  

5.4 Further Work 

On the methodology side, one could write a computer program to incorporate the zeros in the 

likelihood function without adding unity to the count data with zeros. However, this is not straight 
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forward as this is a joint model. More covariates and interactions could be implemented using 

another example. The deviance could be calculated to provide an objective goodness of fit statistic 

than the residual plot which is subjective.  
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Abstract 

In epidemiology, it is often the case that two or more correlated count response variables are 

encountered. Under this scenario, it is more efficient to model the data using a joint model. Besides 

if one of these count variables has an excess of zeros (spike at zero) the log link cannot be used in 

general. The situation is more complicated when the data is grouped into clusters. A Generalized 

Linear Mixed Model (GLMM) is used to accommodate this cluster covariance. The objective of 

this research is to develop a new modeling approach that can handle this situation. The method is 

illustrated on a global data set of Covid 19 patients. The important conclusions are that the new 

model was successfully implemented both in theory and practice. A plot of the residuals indicated 

a well-fitting model to the data.  

Keywords: Joint Model, Generalized Linear Mixed Model (GLMM), Cluster, Spike at zero, 

random effects, Covid 19 

 

1. Introduction 

1.1 Background 

In epidemiological and health studies often several correlated count responses are encountered [4] 

[6]. This type of data is often found to occur within groups (clusters). In this case, it is more 

efficient to model these count responses jointly rather than model each response separately. 

Fernando and Sooriyarachchi [4] use Generalized Linear Mixed Modeling (GLMM) with random 

cluster effects for this scenario which is now quite well developed. In this research, a more difficult 

problem involving four complexities that can be encountered with count data is considered. The 

first is the presence of a huge number of zero counts resulting in an enormous spike at zero [15]. 
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The zero-inflated Poisson is an option for modeling such data but in the context of joint models 

could have convergence problems [2]. The second problem is when the counts are non-zero but 

huge. Neither the Poisson nor the Negative Binomial converges especially in the case of joint 

models [9]. The third situation is the presence of a negative correlation between responses [19]. 

Even though there are indirect methods developed in the literature to handle this, these have been 

developed only for binary, ordinal, and continuous data [19]. The fourth problem is related to 

cluster-specific covariates which occur at different levels of the hierarchy [5]. Rizopoulos [18] has 

dealt with this for survival and normal responses but not for two count variables. In the case of the 

first problem, the literature provides a solution for univariate models [15]. In the case of the second 

problem log transforming the counts and modeling the transformed values as Normal often works 

[13, 16]. In the situation of the third problem GLMM with common random effects has been seen 

to work for survival and count joint responses [19]. In the final problem multilevel modeling for 

high dimensional problems has been seen to work for bivariate binary problems [5].  

      1.2 Objectives 

The primary objective of this research is to develop a new model for the scenario described in 

section 1.1. The secondary objective is to apply the model to a suitable set of data. 

1.3 Brief description of Methods 

The joint model is developed for a Poisson-Normal joint distribution. A Generalized Linear Mixed 

Model with Maximum Likelihood Estimation and Laplace approximation for the marginal             

log-likelihood was used for this purpose [7]. Two random effects to incorporate two different 

cluster effects were used. These random effects are used to join the two responses. The covariance 
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structure used was compound symmetry. It was assumed that both responses have the same random 

variance. 

1.4 Data for the example 

 The data for the example is related to Covid 19 and the relevant details were obtained from the 

website of the Epidemiology Unit of Sri Lanka [10]. The two, count responses pertained to the 

expected number of days elapsed after the last corona case and the total number of corona cases. 

The former had a spike at zero and the latter had very large counts. There was one explanatory 

variable, namely, the type of transmission of the cases. There were 144 countries and this database 

was merged with the population size database given by the UN website [11]. 

1.5 Structure of the Paper 

Section 1 consists of an introduction to the problem, objectives, a brief description of methods, 

and an explanation of the data. Section 2 is made up of a literature review. In section 3 the new 

model is developed. Section 4 gives the example and the discussion consists of section 5 followed 

by references. 

 

2. Literature Review 

2.1 Joint modeling of two count variables 

In epidemiology, often two correlated count variables are encountered, such as the incidence of 

the disease and the platelet count in dengue, the incidence of the disease and white blood cell 

counts in Japanese encephalitis, the incidence of Leptospirosis and the count of serovar-specific 

antibodies to name a few examples. As most of these diseases also depend on the climate and thus 
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on the geographical region the region happens to be a cluster variable. Many zero counts are 

possible in regions where the weather is not conducive to the disease. Thus resulting in a SAZ. 

The second variable is usually related to huge counts and the weather parameters are cluster level 

variables. In the first example given the correlation between the two counts is negative with high 

dengue counts being related to low platelet counts. Under this epidemiological scenario the major 

characteristics are two count variables, cluster variation, one count variable with a SAZ and the 

other count variable with huge counts, correlated counts with the more challenging being that the 

counts are negatively correlated. Thus each of these characteristics are reviewed in the next 

sections. 

Kochelerkota and Kochelerkota [14] and Ophem [17] give a detailed literature review of this 

situation. Gurmu and Elder [6], discuss the joint modeling of two count variables when these 

variables are negatively correlated. They mention that in this scenario the bivariate Poisson and 

the bivariate negative binomial cannot be used to model the data. They consider a two-factor 

framework where dependence between the count variables is modeled using correlated unobserved 

heterogeneity components. Their article uses semi-parametric methods for the estimation of a 

mixture of count models that include negatively correlated counts. Aitchinson and Ho [1] 

particularly discuss the case of negatively correlated count variables where they use a Poisson-

Lognormal mixture to model two count variables with a negative correlation.  

However, their methods [1] [6] do not take in to account the adjustments for clustering, a spike at 

zero, huge counts, and cluster-level covariates. 

Hapugoda and Sooriyarachchi [8] develop a joint model using a single shared random effect to 

model survival and count responses combining the discrete time hazard model and Poisson model. 

This method does not take in to account high dimensional data and has only one random effect. 
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The model [8] though considering clustered data is a joint model for binary and count data and 

does not accommodate an excess of zeros nor huge counts. It can, however, handle a negative 

correlation. 

Sunethra and Sooriyarachchi [19] develop joint models using two separate random effects to model 

survival and count data which are negatively correlated. They use the lognormal distribution to 

model the survival data and the Poisson distribution to model the count data. However, they [19] 

do not consider the case of excess zeros nor huge counts. 

Wickremarachchi (unpublished B.Sc. thesis, 2017) [20] develop a bivariate binomial model in the 

presence of clusters. This is modeled using multilevel modeling. Here a different technique to 

Hapugoda and Sooriyarachchi [8] and Sunethra and Sooriyarachchi [19] is used to model the 

correlation within clusters. It is another option for the cluster scenario. This technique is multilevel 

modeling. This method [20] does not accommodate negative correlation, excess zeros, high 

dimensional data nor huge counts. 

2.2 Use of Random Effect Models for Joint Model Development 

A pioneer of random effect models for joint model development is Rizopoulos [18]. He developed 

joint models for survival and repeated measures responses considered to be normally distributed. 

Sunethra and Sooriyarachchi [19] give a detailed review of this situation. They consider both the 

case of positive, and negative correlation between two response variables. For the case of positive 

correlation, they discuss shared random effect models and for negatively correlated responses they 

consider separate random effect models. However, his work [18] is purely for joint survival and 

normal longitudinal models. He has not considered count responses and so his work does not 

discuss an excess of zeros and huge counts.   
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Similar to Sunethra and Sooriyarachchi [19], in this paper, the author examined the joint modeling 

of two count variables using shared random effects with two random effects at two different levels. 

The method used in this research is a technique that combines the methods of Sunethra and 

Sooriyarachchi [19] with that of Aitchinson and Ho [1]; Lorenz, Jenkner et al. [15], and                       

G. Fernando and Sooriyarachchi [5].  

This current approach uses two shared random effects as in [19], uses appropriate methods to 

incorporate negative correlation for Poisson-Lognormal mixtures as in [2], adjusts for a spike at 

zero as in [15], and extends the problem to 3-dimensional data as in [5]. Apart from combining 

these methods, further extensions have been made by looking at significance tests for the random 

effects, extensions were also made to [19] and [5] where the survival and count joint model and 

the univariate binary model respectively were changed to a joint count model. Finally [15] was 

extended from a univariate model to a bivariate model. 

2.3 The case of a peak (spike) at zero 

When in addition to negative correlation if one of the count variables has a spike at zero, neither 

the zero-inflated Poisson nor the zero-inflated negative binomial usually converge [2]. Lorenz, 

Jenkner et al. [15] introduced four methods to handle this case. They discussed the case occurring 

often in Epidemiological and Clinical Research where variables are often semi-continuous with 

several patients often having exposure zero and a continuous distribution among those exposed. 

This is referred to as a spike at zero (SAZ). They illustrated their procedures on a German Breast 

Cancer Study Group data (GBSG). Their method involves dichotomizing the SAZ variable into a 

binary variable (X) with the two levels relating to the zeros and non-zeros. Then the binary 

information is combined with the positive continuous variables. This information is combined into 

one variable in the standard technique to give by default the linear component. Using the approach 
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of Lorenz, Jenker et al. [15] in our study we take the first count variable (srcasen) split into two, 

one a binary variable for zeros and non-zeros and the other a continuous srcasen variable and the 

two srcasen variables are treated as one prognostic factor in the model. Both variables are tested 

jointly in the model. 

Expectation [Response] (combined variable) = Exp (βZ + γX) where Z consists of the other 

explanatory variables and the intercept (for intercept β=1) and X consists of the binary explanatory 

variable. There is no intercept in this model. If the Response is a count it can be taken as having a 

Poisson distribution with a log link. Here β and γ are the unknown coefficients of Z and X 

respectively.  

The authors of this paper [15] do not consider hierarchical data in the form of clusters nor huge 

counts. Also, they only consider the univariate case. 

The authors [15] have also mentioned about some discrepancies in the method and the way of 

getting over these discrepancies. According to them, “Modeling such SAZ variables is challenging 

and there are both statistical problems and problems conserning interpretation arising from this 

situation. Readers are referred to paper [15] for more information on the overcoming of these 

problems. 

 

 2.4 The case of cluster effects 

When the data is hierarchical we refer to this as multilevel data. We consider here the case where 

there are three levels. The third level is a large cluster within which lies a small cluster referred to 

as the second level within which lies two correlated count responses referred to as the first level. 

If the correlation within a cluster is significant then the model cannot be fitted using standard 

models. This correlation has to be taken in to account. [5] 
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2.5 Methods used in this research 

Here a shared random effects joint model is used to model two negatively correlated counts using 

the Poisson-Normal mixture. A spike at zero is taken into consideration also. The model is 

developed within the framework of hierarchical models. The method used in this research is a 

technique that combines the methods of Sunethra and Sooriyarachchi [19] with that of Aitchinson 

and Ho [1]; Lorenz, Jenkner et al. [15], and G. Fernando and Sooriyarachchi [5]. This combination 

is not found in the literature and therefore, is a novel development. 

 

3. Theory 

Consider the method of Hapugoda and Sooriyarachchi [8] where the Procedure Glimmix in SAS 

9.4 is used to fit a shared parameter joint model to a survival and count response. The model fitted 

is a Generalized Linear Mixed Model (GLMM) with one random effect representing a single 

cluster. This method will be modified for this situation. Here we use a Poisson model with an 

adjustment for a spike at zero for one count variable and the other count variable is log-transformed 

and modeled as a Normal response variable [1][16]. The correlation matrix is modeled as of type 

compound symmetry. The method of estimation used was the Maximum Likelihood with Laplace 

Approximation of the marginal log-likelihood [7]. In this research, a shared parameter joint model 

for joining the two count responses is fitted. The model fitted is a Generalized Linear Mixed Model 

(GLMM) with two random effects representing two sets of clusters. 
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3.1 Poisson Regression Model for clustered data 

Suppose 𝑦𝑖𝑗1 is the first observed count for the ith small cluster in level 2 within the jth third level 

cluster where 𝑦𝑖𝑗1~ Poisson (µ𝑖𝑗1) and µ𝑖𝑗1 is the mean of the Poisson distribution for the 1st 

observation of  level 1 within the ith 2nd level unit within the jth third level unit. 𝐸𝑖𝑗1 is the Expected 

count or offset [12]. The Z𝑖𝑗 are the predictors and 𝛽0i𝑗= 𝛽0+𝑢0i𝑗 + v0j is the random intercept where 

𝛽0 is a fixed component and 𝑢0i𝑗 is a random component for cluster-level 2 (intercept) and v0j is a 

random component for cluster-level 3. Let Xij be the binary variable to adjust for the spike at zero. 

Then a three-level random intercept Poisson Regression model can be given by  

log (µ𝑖𝑗1 ) = log (𝐸𝑖𝑗1) + 𝛽0i𝑗 + 𝛽Z𝑖𝑗 + γ Xij where 𝛽0i𝑗 = 𝛽0 + u0ij  + v0j  and u0ij ~ N(0, 𝜎𝑢
2) and v0j 

~ N(0, 𝜎𝑣
2).                                                                                                               (1) 

To classify a count as either zero or not, a binary variable X is added to the model. It is assessed 

in a two-stage procedure to determine whether the binary variable and/or the continuous function 

for the positive part is required for a suitable fit [15]. 

 

 

 

 

3.2 The Normal model for log count clustered data 

Let 𝑦𝑖𝑗2 be the log-transformed second count variable for the ith small cluster in level 2 within the 

jth third level cluster where 𝑦𝑖𝑗2 ~ Normal (µ𝑖𝑗2, σij2
2) where µ𝑖𝑗2 is the mean of the Normal 

distribution for the 2nd observation of level 1 within the ith 2nd level unit within the jth third level 

unit and σij2
2 is the variance of the Normal distribution for the 2nd observation of level 1 within the 

ith second level unit within the jth third level unit. The Z𝑖𝑗 are the predictors and 𝛽0i𝑗= 𝛽0+𝑢0i𝑗 + v0j 

where 𝑢0i𝑗 and v0j are as in section 3.1. Then a three-level random intercept Normal Regression 
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model can be given by  

µ𝑖𝑗2 = 𝛽0i𝑗 +𝛽Z𝑖𝑗 + γ Xij where 𝛽0i𝑗= 𝛽0+ u0ij +  v0j   and u0ij ~ N(0, 𝜎𝑢
2) and v0j ~ N(0, 𝜎𝑣

2)                     

                                                                                                                                               (2) 

3.3 The joint model for clustered data 

The responses of analysis are Yij1 (Poisson – Count 1) and Yij2 (Normal – Log transformed count 

2). The suffixes i and j, are as defined before. Variables that impact Y = (Y1, Y2) are the explanatory 

variables (X𝑖𝑗 and Z𝑖𝑗) as defined before i=1,2,…,I where I is the number of small clusters and 

j=1,2,…., J where J is the number of large clusters. To formulate a joint model, Generalized Linear 

Model (GLM) can be used to form marginal models for each response by considering mean 

E(Yijk/Xij, Zij) and variance Var(Yijk/Xij, Zij) where k=1,2. The approach to link the responses is by 

structuring a covariance matrix Var(Yijk/Xij, Zij) to include potential correlations.[16]. The random 

effects are assumed to be the same for both responses so this is a shared random-effects model.  

In GLM lk (E(Yijk/Xij, Zij)) = 𝑋𝑖𝑗𝑘
′𝛽𝑘 + 𝑍𝑖𝑗𝑘

′𝛾𝑘 , k=1,2 where i,j denotes each record from each 

ith small cluster within each jth large cluster and lk is the link function. Here, l1(u) is the log link 

and l2(u)  is the identity link. GLIMMIX is used to estimate two marginal models jointly. 

A structural formulation of the model is given as: 

l1(𝑌𝑖𝑗1
′ ) =Log (µi𝑗1) = log (𝐸𝑖𝑗1) + 𝛽0i𝑗 +𝛽Z𝑖𝑗 + γ Xij where 𝛽0i𝑗= 𝛽0+ u0ij  + v0j  and u0ij ~ N(0, 𝜎𝑢

2)

 and v0j ~ N(0, 𝜎𝑣
2).                       (3) 

and 
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l2(𝑌𝑖𝑗2
′ ) = (μij2) = ϑ0i𝑗 + ϑX𝑖𝑗 + δ Xij where ϑ 0i𝑗= ϑ 0+ u0ij + v0j   and u0ij ~ N(0, 𝜎𝑢

2) and v0j ~ N(0, 𝜎𝑣
2)                                                                                                                                           

(4)  

          Here k=1,2 and i=1(1) nj    and j=1(1)m  where nj  is the number of small clusters within big 

cluster j and m is the number of big clusters.                                 

       For simplicity, we assume that both sets of random effects are the same (u0ij and v0j) and have 

the same variance(𝜎𝑢
2 𝑎𝑛𝑑 𝜎𝑣

2  respectively). The joint model variance-covariance matrix,        

Var-Cov (Yij1, Yij2) is of the form  [
𝜎1

2 𝜌12𝜎1𝜎2

𝜌12𝜎1𝜎2 𝜎2
2 ]   where:                                 

𝜎2
2 =  𝜎𝑢 

2 +𝜎𝑣
2 + 𝜎2 and 𝜎2  is the variance of the error term in the regression. 

Here 𝜎1
2 can be derived using the methods of Sunethra et al. (2020) [19].  The correlation 

between the Yij1   and   Yij2 is taken to be 𝜌12 .  It is assumed that the u0ij’s are independent of the 

v0j’s. GLIMMIX will structure the variance-covariance matrix of Y = (Y1, Y2) as in Hapugoda et 

al. [7]. The development of the joint log-likelihood and thereby the joint model is given in detail 

in Sunethra and Sooriyarachchi [19].  

 

4. Example 

4.1 Description of the data set 

     The data was extracted from the website of the Epidemiology Unit of Sri Lanka 

(http://www.epid.gov.lk/web/index.php?option=com_content&view=article&id=225&lang=en) 

[9] and is related to Covid 19. The data is global and consists of 144 countries. The population 

sizes of each country were obtained from a United Nations (UN) database 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.epid.gov.lk/web/index.php?option=com_content&view=article&id=225&lang=en


13 
 

(https://population.un.org/wpp/Download/Standard/Population/)[10]. The data from the 

Epidemiology unit was made up of the country, the geographical region, the days elapsed from the 

last Covid 19 case in the country, the total number of Covid 19 cases in the country, and the type 

of spread of the virus. There were three types of spread, namely, clusters, community, and 

sporadic. The variable, days lapsed from the last Covid 19 case in the country is a count response 

variable with a spike at zero. Therefore, a binary variable X was created to differentiate the zeros 

from the non-zeros. The variable, the total number of Covid 19 cases in the country was another 

count response with huge numbers and no zeros. The two explanatory variables were X and the 

type of spread of the virus (Z). There were two cluster variables, namely country, and region.  

Table 1 gives details of the data. 

4.2 Preliminaries for Modeling 

Before fitting models, the distribution of the responses and their correlation needs to be 

determined. For the first response related to the days elapsed from the last Covid 19 case in the 

country which has a spike at zero, based on Lorenz, Jenkner et al. [15] a Poisson model with an 

adjustment for the spike at zero was selected. For the total number of Covid 19 cases in the country, 

another Poisson Model could not be used as the two response variables were negatively correlated. 

Based on Aitchinson and Ho [1] a Lognormal model was used for the second response with a view 

to joint modeling. As the counts in the second response were extremely large and therefore, to 

avoid convergence problems the second response was log-transformed and a Normal model was 

fitted to impose a lognormal model. Figure 1(a) gives a histogram of the log-transformed second 

response and Figure 1(b) gives a Normal probability plot of the transformed second response. 

                                                       Table 1 should come here. 
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Fig 1(a) and Fig 1(b) should come here. 

Figure 1 (a) shows a symmetric histogram close to a Normal distribution while figure 1(b) is close 

to a straight line except at the lower extreme. Based on these figures a Normal model is selected 

as the Normal distribution is usually quite robust to small departures from Normality [16].  

The two responses are labeled srcase (response 1) and ltcases (response 2) and the correlation 

between these two variables is -0.4894 and is significant at 0.01%. Before modeling according to 

Lorenz, Jenkner et al. [15] a value of one is added to srcase in order to attain convergence. This 

new variable is labeled srcasen. As the correlation is a large negative value srcasen is modelled as 

Poisson after adjusting for the zeros as in Lorenz, Jenkner et al. [15] and following Aitchinson and 

Ho [1] the log-transformed second response (ltcases) is modelled as a Normal. 

4.3 Univariate Modeling 

4.3.1. Modeling srcasen using a univariate random effect model with two random effects 

Here we take srcasen to have a Poisson response and the explanatory variables are taken to be the 

type and X. The random effects are taken to be region and country nested within the region. The 

link is taken as a log and the offset is taken to be the log of the population size. The type of 

correlation structure used is variance components. The method of estimation is the maximum 

likelihood with Laplace approximation of the marginal likelihood. In model fitting, the type 

variable and X are both significant. The parameter estimates can be interpreted as follows. When 

type=community, the expected number of days elapsed after the last case, decreases by a ratio of 

0.162 compared to type=sporadic. The type=clusters is not significant. When srcase is non-zero 

the expected number of days elapsed after the last case increases by a ratio of 17.63 compared to 
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when srcase is zero. The variance parameter estimate of the region random effect is 0.3805. The 

variance parameter estimate of the country (region) random effect is 2.9052. While the country 

(region) variance parameter is significant the region variance parameter is not significant. The AIC 

of the fitted model is 749.37 and the Z value given by the Wald test of the two variance parameters 

is 1 and 6.56 respectively resulting in p-values of 0.1586 and <0.0001 respectively. 

4.3.2. Modeling ltcase using a univariate random effect model with two random effects 

Here we take ltcase the log-transformed response 2 to have a normal distribution. As before the 

explanatory variables are taken to be type and X. The random effects are taken to be region and 

country nested within the region. The link is taken as identity. The type of correlation structure 

used is variance components. The method of estimation is the maximum likelihood with Laplace 

approximation of the marginal log-likelihood. Both the type variable and X are significant in this 

model. The parameter estimates can be interpreted as follows. When type=clusters the ratio of the 

total number of cases increases by 6.63 compared to sporadic type. When type=community the 

ratio of the total number of cases increases by 58.99 compared to sporadic type. When X is non-

zero the ratio of the total number of cases decreases by 0.1617 compared to the case when X is 

zero. The variance parameter estimate of region random effect is 0.3364. The variance parameter 

estimate of the country (region) is 1.5817. Here the country (region) random effect is significant 

while the region random effect is not significant. The AIC of the fitted model is 538.84 and the Z 

value given by the Wald test of the two variance components is 1.19 and 3.14 resulting in p-values 

of 0.117 and 0.0008 respectively.  
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4.4 Joint Modeling of srcasen and ltcases using Poisson and Normal distributions 

respectively 

Here we build a joint model taking srcasen to have a Poisson distribution and ltcases to have a 

normal distribution. A random-effects model with shared random effects is used to fit this joint 

model. Two random effects one to represent the correlation between countries within regions and 

the other to represent the correlation between responses within countries were used. The 

covariance structure used was compound symmetry. The method of estimation was maximum 

likelihood with Laplace approximation of the marginal log-likelihood. The parameter estimates 

can be interpreted as follows. Both type and X were significantly associated with both responses 

srcasen and ltcases. For srcasen the ratio of the number of days after the last case for type=clusters 

reduces by 0.5612 compared to type=sporadic and for type=community it decreases by 0.4982 

compared to type=sporadic. When X is non zero the rate increases by 4.833 compared to when X 

is zero. For ltcases the ratio of the total number of cases increases by 7.54 for type=cluster 

compared to type=sporadic and increases by 59.81 for type=community compared to 

type=sporadic. When X is non zero the total number of cases reduces by 0.1572 compared to when 

X=0. The variance-covariance matrix of the region is 

[
0.0081 0.0074
0.0074 0.0081

] 

And the Variance-Covariance matrix of the country (region) is 

[
0.4101 −0.2082

−0.2082 0.4101
] 

As in the univariate case, the region random effect is not significant while the country (region) 

random effect is highly significant. As seen before the correlation between responses within 
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countries is negative. The AIC of this model is 1043.34 and the Z value given by the Wald test of 

the two variance components is 0.34 and 8.04 resulting in p-values 0.3667 and <0.0001 

respectively.  

 

4.5 Comparison of the Univariate and Joint Models 

Table 2 gives the fit statistics of the two univariate and the joint models. 

Table 2 should come here. 

By comparing the estimates given in table 2, it is evident that the joint model has a better 

performance as its AIC was lower (1043.34) than the sum of the AICs of the univariate models 

(1288.21) and the Z value given by the Wald test of the variance parameter of the Country (Region) 

effect of the joint model was higher than those of the univariate models.  

The parameter estimates for the normal component of the joint model are close to the parameter 

estimates of the corresponding normal univariate model. However, the Poisson components are 

very different. The difference in the parameter estimates of the univariate and joint model is due 

to the joint model taking account of the correlation between responses while the univariate models 

are unadjusted for correlation. 

 

4.6 Examining the fit of the joint model 

To examine how good the fitted joint model is the students’ residuals were plotted against the 

predicted values. The 99% horizontal confidence bands were also superimposed on the same plot 

at y=-2.58 and y=2.58. Figure 2 gives this plot. Of the 288 observations all but 6 observations lay 

within the 99% confidence bands. Even the 6 observations outside the bands were small outliers. 
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Also, there is no other pattern in the plot except some lines. The covariates in this model, Dist 

(pertaining to distribution) and X (Pertaining to the SAZ variable) are binary/dichotomous and Z 

(pertaining to type) is categorical. Collett [3] explains that wherever there are binary/dichotomous 

independent predictors in the model these linear patterns are a usual occurrence. This indicates a 

satisfactory fit of the model. 

                Figure 2 should come here. 

4.7 Comparing the developed joint model with the traditional joint model 

Here we compare the newly developed joint model with the traditional joint model ignoring the 

methods developed for the excess of zeros and huge counts. In the traditional model count 

response, 1 is modeled as a Poisson variable while count response 2 is modeled as a lognormal 

variable. The AIC is smaller (1026.70) in the traditional model compared to the newly developed 

model (1043.34). However, these two AIC values cannot be directly compared as these are based 

on two slightly different data sets due to the newly developed model including the additional binary 

variable. The Z statistic given by the Wald test for the Country (Region) variance component is 

much less for the traditional model (5.35) compared to the newly developed model (8.04). The 

Studentized residual plot for the traditional model shows 11 points outside the 99% confidence 

bands while the newly developed model shows only 6 points outside these bands. Also, the width 

of the residual plot on the vertical axis is much wider for the traditional model compared to the 

newly developed model indicating that the traditional model has bigger outliers. The only patterns 

here are linear and curvy linear. The covariates in this model, are Dist (pertaining to distribution) 

is binary/dichotomous and Z (pertaining to type) is categorical. Collett [3] explains that wherever 

there are binary/dichotomous independent predictors in the model then these patterns are a usual 
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occurrence and therefore, it is no surprise that the plot contains some linear and curvy-linear 

patterns [3]. This is shown in Figure 3.   

Figure 3 should come here. 

There are three instances where the newly developed model is better than the traditional model. 

So overall the newly developed model is superior to the traditional model. 

5. Discussion 

5.1 Important Conclusions 

When there are two counts and one has a spike at zero and the other has very large non zero counts 

the former variable can be modeled as a Poisson random variable with log link using the technique 

of  Lorenz, Jenkner et al. [15] successfully. The other variable can be log-transformed and modeled 

as a Normal response with an identity link.  

When these two variables are highly negatively correlated these cannot be jointly modeled using 

a bivariate Poisson or bivariate negative binomial distribution. Thus transforming one variable is 

the only option. Aitchinson and Ho [1] suggest a way around this situation and they have modeled 

one count using the lognormal distribution. As there is a problem of heterogeneity in our second 

variable our joint model gives a better fit when log-transformed and modeled as a Normal response. 

A Generalized Linear Mixed Model (GLMM) in the form of Hapugoda and Sooriyarachchi [8] 

can be used to fit this joint model with Maximum Likelihood Estimation (MLE) and Laplace 

Approximation of the marginal log-likelihood. 

This procedure was illustrated on an example related to a covid 19 data set. Two random effects 

of which one was a nested effect were used in the joint model [19]. The type of covariance matrix 
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used was compound symmetry [8]. The explanatory variable Type indicated that the expected 

number of days elapsed after the last covid 19 cases was significantly less for cluster and 

community type of spreading of the disease compared to a sporadic type of spreading. For the log 

count of the total number of covid 19 cases, there were significantly more cases when the spread 

type was cluster and community compared to sporadic type.  

When the joint model was compared to two univariate models, the AIC of the joint model was 

nearly 250 less than the AIC of the sum of the two univariate models. In addition, the standard 

error of the variance parameters of the variance-covariance matrix was very much lower in the 

joint model compared to the two univariate models [8]. The explanatory variables X and type were 

both significant for both responses in the joint model. Of the two random effects, only the nested 

effect country (region) was significant and the random effect region was not significant.  

The plot of the studentized residuals versus the predicted value was drawn to examine the goodness 

of fit of the joint model. Of 288 observations all except 6 observations were within the 99% 

confidence bands. Even these 6 observations resulted in small outliers. The complex scenario was 

successfully modeled using the model proposed.   

5.2 Comparing this research with what is known in the literature 

Comparing our method with Lorenz, Jenkner et al. [15] our method was as successful as theirs for 

a much more complicated scenario. When comparing our research with Fernando and 

Sooriyarachchi [4] they had a positive correlation which was modeled by a bivariate negative 

binomial distribution. However, as our responses were negatively correlated that research could 

not be followed. When comparing our research with Hapugoda and Sooriyarachchi [8] their 

research modeled survival and count data and the count variable did not have a spike at zero and 
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had only one random effect. When comparing our research with Sunethra and Sooriyarachchi [19] 

they too developed a joint model for survival and count variables where they did not have a spike 

at zero. They used a separate random effect model while we used a shared random effect model 

with the transformation of one variable. When comparing the newly developed model with the 

traditional model, overall the newly developed model was superior based on the example used. 

 

Here in this research, it should be mentioned that log transforming the second count variable and 

modeling it as normal is the same as modeling the untransformed second count variable using the 

lognormal distribution.  

The methods used here build upon a combination of ideas from the literature and these ideas have 

never been put together before as explained in the literature review. Therefore, the methods 

developed here and the example analyzed is a novel technique for the scenario considered. 

5.3 Limitations of the study 

In the example, there was only one explanatory variable in the study. The offset variable was the 

log of the population size. For some countries there were no values for the population so these 

countries had to be dropped from the analysis. Most distribution combinations for the two 

responses did not converge. Both zero-inflated Poisson and Zero-inflated Negative Binomial did 

not work for the count response with a spike at zero.  

5.4 Further Work 

On the methodology side, one could write a computer program to incorporate the zeros in the 

likelihood function without adding unity to the count data with zeros. However, this is not straight 
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forward as this is a joint model. More covariates and interactions could be implemented using 

another example. The deviance could be calculated to provide an objective goodness of fit statistic 

than the residual plot which is subjective.  
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Comments to Editor and Reviewers 

 

1. On page 12, the formula for variance of Possion response is incorrect. An approximation 

of the variance can be obtained using delta method with exponential function as the 

transformation function. I would recommend removing the paragraph on the description 

of the variance and covariance matrix. But please provide a reference instead. 

 

 

The required material has been removed and references have been given. The corrections 

are given in red text. 


