
Prognostic models with Competing Risks : Methods and Application to Prostate 
Cancer Data 

 
 
 
 
 
 
 
 
 
 
 
 
 

N.K.P.S. Jayawardana, M.R. Sooriyarachchi 
Department of Statistics, University of Colombo 

 

 

 

 

 

 

 

 

 

Contact Person: Prof. Roshini Sooriyarachchi, 
   Department of Statistics, 
   University of Colombo, 
   Colombo 03. 
Telephone: 2590111 
Fax:  2590111 
E-mail: roshini@mail.cmb.ac.lk 



1 
 

Abstract 

Fundamental statistical methods for analyzing competing risks data have been in 

discussion for decades. However there’s still an uncertainty on how to approach this type 

of data due to its complexities and thus there exist several gaps in the available 

methodology particularly in the area of modeling and model validation. Hence, this has 

become a topic of interest for many researchers. We review competing-risk regression 

models with a view toward: testing for prognostic factors, testing  for treatment effects 

after adjusting for prognostic factors and model validation. . An example of prostate 

cancer data from a French study is used to illustrate the methods examined. This includes 

the application of the Lunn and McNeil  regression model for testing prognostic factors 

and treatments  and the adaptation and modification of  a goodness-of-fit  test, suggested 

in the literature, to test the hypothesis whether to include the covariates in a 

multiplicative Cox proportional hazards model, against the hypothesis whether to include 

the covariates in a more general class of additive-multiplicative model. Serum prostatic 

acid phosphatase, Combined index of stage and histological grade, Size of primary 

tumor, Serum hemoglobin level, Performance rating and age were identified as the more 

vital factors for the survival of  patients from death by prostate cancer. Furthermore, the 

active treatments (estrogen) significantly effects time to death by prostate cancer, where 

the survival experience of patients showed improvement for higher doses of  estrogen 

treatment. The goodness of fit test indicated that the model fit was adequate and that all 

prognostic factors in the model had a multiplicative effect on hazard.  

Keywords : Competing Risks, Cumulative Incidence Function, Proportional 

Hazards,   Stratified Cox model,  Additive-Multiplicative Hazards Model.  

 

1. Introduction 

Survival analysis focuses on one possibility for the occurrence of the event. Often times 

the subjects under investigation are exposed to more than one possibility of experiencing 

an event of interest and this is known as competing risks. In the real world competing 

risks situation is often predominant, where the end point consists of several distinct 
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events of interest. For example in a treatment episode, treatment maybe discontinued, 

switched, a supplement treatment maybe given or death may occur. To investigate the 

effect of one specific cause to the end result, the other risks affecting the outcome should 

be controlled.  Basic statistical methodology for analyzing competing risks data have 

been discussed for decades. The fundamental tools for the analysis of survival data in the 

presence of competing risks were  developed in the 1950s, however there is still an 

uncertainty on how to analyze this type of data and how to use the numerous tools and 

methods introduced by researchers interested in this area of statistics, over a period of 

time. The Main problem in a competing risks situation includes the unknown and 

inestimable interrelations among competing risks and the interpretation of the results in 

the presence of such situations.  Many research papers are on quite a formal mathematical 

level where the concentration has been mainly drawn upon mathematical functions and 

definitions. Particularly the area of modeling competing risks has several gaps where 

many papers discuss the mathematical details of the modeling procedure and no proper 

application to real world clinical trials is available. An area that is really lacking in 

development is model validation where only a single paper could be found that discussed 

goodness of fit techniques for this type of model.  

Based on the gaps in the literature the following objectives were formulated. The primary 

objective of the study is to illustrate methodology for the modeling of competing risks 

data and to adapt and extend the only model validation procedure in the literature, by way 

of an example. A secondary objective is to determine the factors affecting the survival of 

prostate cancer patients in the presence of competing risks.  
The data set was  taken from a randomized clinical trial comparing treatments for prostate 

cancer by Byar and Green, Bulletin Cancer, Paris (1980). There are 18 explanatory 

variables. The response variable of interest is the months of follow–up of the patients. 

The data set has been collected on 502 prostate cancer patients, where after removing 

patients with unknown cause of death, there are 495 patient records. Here, the interest is 

focused on the death by Prostate cancer when the other competing risks are controlled. 

The potential prognostic factors together with the outcome variable, their levels and the 

meanings of the levels are given in table 1. 

Table 1 should come here 
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Section 2 includes a review of the available literature on modeling competing risks and 

model validation procedures. Section 3 gives the methods used/extended in this study. 

Section 4 presents the analysis and results obtained by applying the methodology in 

section 3 to the data. Section 5 gives conclusions and recommendations based on the 

study.  

 

2. Review of Literature on Competing Risk Models 

Since 1950’s there has been vast amount of discussions in literature on the models that 

could be used in the presence of competing risks. Gail (1975) reviewed and gave 

criticisms on some competing risks models proposed by various researchers. He 

introduced a notation, allowing the models to be defined easily. Kay (1986) used an 

approach described by Kalbfleisch and Prentice (1980), which involved fitting separate 

models for each type of failure, treating other failure types/competing risks as censored 

data. A main drawback identified in this model is that the different types of failures are 

not treated jointly, thus the parameter estimates of different failure types could not be 

compared directly. To avoid this drawback alternative approaches have been used where 

more complex models are fitted considering different failure types. Larson and Dinse 

(1985) introduced a mixture model with a multinomial distribution for types of failures 

and a piece-wise exponential distribution for conditional distribution of failure times 

given type of failure. Since this provides a regression framework, associated variables 

could be adjusted for and their effects on the joint distribution of time and type of failure 

could be assessed. This model does not assume independence between the types of events 

or the competing risks. Kuk (1992) also followed this approach of fitting more complex 

models incorporating the different failure types. But in this approach, difficulties arise 

due to the inadequacy of the standard software tools.  

Lunn and McNeil (1995) demonstrated that standard software could be used in the 

analysis of survival data in the presence of competing risks. The authors presented two 

methods (Method A and Method B) for joint estimation of parameters in models for 

competing risks, where Cox’s proportional hazards regression model was used in both 

cases. The method, initially assuming two types of failures in addition to censoring 

( 0 1orδ = ), adopts the different types of failures by augmenting the data using a data 
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duplication method. Each entry is duplicated, one for each failure type but the second 

entry always censored. Here the hazards of the two types of risks are assumed to be 

additive, so the hazard of failure is the sum of those two and the time to failure is the 

minimum of two failure times. Method A uses δ  as a covariate in an unstratified Cox 

regression, assuming that the hazard functions associated with the two types of failures 

has a constant ratio. In general proportionality of the hazards cannot be assumed, but a 

good fit can be obtained by taking separate time zones and separating the model based on 

that. Method B uses δ  as a stratifying variable in a Cox regression, stratified by the type 

of failure. Here assumptions on proportional baseline hazards are not required.  The 

advantages of the augmented data approach are that it can run immediately on the 

existing software packages and that it does not over-parameterize the model. Ali and 

Babiker (2002) demonstrated the 2 approaches proposed by Lunn and McNeil (1995), by 

fitting those models on augmented data using ‘stcox’ in stata. Their program produced 

cumulative incidences with point-wise confidence interval apart from the parameter 

estimates and their standard errors. They performed this demonstration duplicating the 

data k times, for the k failure types. 

A semi-parametric proportional hazard model was proposed by Fine and Gray (1999), for 

the subdistribution (the cumulative incidence function). The form of the partial likelihood 

used here is similar to that used in Cox proportional hazards model (Cox, 1972). This 

versatile method of modeling the hazard of the subdistribution was considered as a 

natural extension of the Cox proportional hazards model. Just as the Cox model requires 

the proportionality of the cause-specific hazard, this approach requires the hazards of the 

CIF to be proportional. The estimator obtained for a subject under this method is 

uniformly consistent. The availability of the software for the above analysis and the 

ability of incorporating time-dependent covariates make a definite advantage. 

Gelfand et al. (2000) proposed a semi-parametric version of the conventional 

proportional hazards survival model, where a flexible class of parametric specifications 

providing better modeling and an interpretation of the hazard as a latent competing risk 

model were suggested. Here also as in Lunn and McNeil, a data augmentation scheme is 

followed. 



5 
 

 Many authors have proposed models that combine the Cox model and additive model 

(Lin and Ying (1995) et al.). Martinussen and Scheike (2002) proposed a flexible 

additive multiplicative hazard model that allows both time-varying and fixed covariate 

effects. Here the two components of the model included additive covariate effects 

through an additive Aalen model (Aalen, 1980), and multiplicative covariate effects 

through a Cox regression model (Cox, 1972).  Model was also extended to allow for 

time-varying covariate effects in the multiplicative part of the model. 

Sun, Liu, Sun and Zhang (2006) proposed a generalization of the above model to account 

for a competing risks situation. The authors produced inference procedures in estimating 

non-parametric and parametric components of the flexible additive multiplicative model. 

While, Martinussen et al. (2002) derived large-sample properties by using martingale 

central limit theory and the variance estimators based on martingales making the 

prediction difficult, this study used the empirical process theory. Robust variance 

estimation and a goodness-of-fit procedure are also proposed.  

 

3. Materials and Methods 

3.1 Description 

Initially the data on prostate cancer patients will be analyzed descriptively to visualize the 

features prevalent in the data. For this purpose Cumulative Incidence Function (CIF) 

(Pintille, 2006) will be used. Using CIF graphs the data set would be visualized 

graphically, with the hope of identifying whether the CIFs change according to the levels 

of each variable. Before fitting a model, the variables should be tested for inclusion in the 

model with the hope of preserving simplicity of the model. Thus, various tests are carried 

out to test the covariates. For testing the covariates with only two levels, Pepe and Mori’s 

test (Pepe and Mori, 1993) will be used. As this does not provide for testing of the 

covariates with more than two levels, an extension of this test by Lunn (1998) will be 

used in this case. Having identified the variables for inclusion in the model a Cox 

proportional regression model would be fitted to the data using a data augmentation 

procedure, following Lunn and McNeil (1995). When it comes to model fitting, two 

approaches of Lunn and McNeil (1995) are explored.  Model validation of a proportional 

hazard (PH) model mainly focuses on checking the validity of the assumptions of 
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proportionality of hazards. A goodness-of-fit test procedure proposed by Sun et al. 

(2006), based on an additive-multiplicative model presented by Martinussen et al. (2002), 

will be followed. This test will be adjusted to suit the needs of this study. There are two 

mathematical approaches Pintilie (2006) to dealing with competing risks, where both the 

methods have been discussed in the literature in the usage of different competing risks 

tools. These two methods are namely, Competing risks as bivariate random variable and 

Competing risks as latent failure times. As the latter method  cannot make use of the 

dependence structure between times to different types of events in this study more 

concentration is towards bivariate approach. 

 

3.2 Lunn and McNeil’s model for competing risks 

Of the models reviewed in section 2 the Lunn and McNeil’s model was selected for 

modeling due to it being based on the familiar Cox proportional hazards model (Cox, 

1972) and also due to the fact that there was available software (Stata) for fitting this 

model. Under the augmented data approach introduced by Lunn and McNeil (1995), there 

are two approaches to joint estimation of the parameters in models for competing risks. 

These two approaches, both using a Cox proportional hazards model would be discussed 

here with regard to the study. Initially considering that there are only two types of failure, 

each data entry would be entered twice, one for each failure type, ( 0 1)orδ = . The 

covariates zi’s are augmented to allow for possible interactions with type of failure. 

The Cox proportional hazard models  used in this study, with regard to the two methods, 

can be given as follows: 

 

00 0( ) ( ) exp( )............( )i i ih t h t b b z z Aδ δ θ δ′ ′= + +  

0( ) ( ) exp( )............( )i i ih t h t b z z Bδ δ θ δ′ ′= +  

 

Here,  iz  is a p-dimensional vector of measured covariates for the thδ  event, ( )ih tδ  is the 

hazard function of the ith subject on the thδ  failure type at time t. b’s are vectors of 

regression parameters to be estimated.  
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In model (A), 00 ( )h t  is the baseline hazard function that is common to all the events. (i.e. 

00( ) ( )ih t h tδ =  for 1,......, kδ = ) 

Model (B), known as a stratified Cox proportional hazard model, stratified by the failure 

type, allows the baseline hazard to vary over each failure type; 0 ( )h tδ . Models A and B  

are fitted by determining in each case the values of the parameters which maximize the 

patial log-likelihood. Lunn and McNeil (1995) provide more details on this. 

 

3.3 Model validation techniques 

Among the very few methods available in the literature on model validation techniques in 

the presence of competing risks, the test procedure proposed by Sun, Liu, Sun and Zhang 

(2006) is considered here and this test is modified to suit our study. The goodness-of-fit 

test proposed by Sun et al. (2006) is based on a flexible additive multiplicative hazards 

model. This model generalizes the flexible additive multiplicative model proposed by 

Martinussen and Scheike (2002) for survival analysis, to accommodate for competing 

risks. This model allows both time-varying and fixed covariate effects, where the two 

components of the model includes additive covariate effects through an additive Aalen 

model (Aalen, 1980), and multiplicative covariate effects through a Cox regression model 

(Cox, 1972). The model used by Sun et al. (2006), is as follows: 

݄ଵሺݐ; ,࢞ ሻࢠ ൌ  ࢞ሻݐᇱሺࢻ   ݄ଵሺݐሻexp ሺࢼᇱ  ሻ                                                                       ሺ1ሻࢠ

Where x and z  are vectors of covariates of dimensions q and p, α (t) is an unknown q-

vector of time varying components representing the effects of covariates x on 1 0,h β  is a 

p-vector of unknown regression parameters denoting effects of z on 1h , and 10 ( )h t  is an 

unspecified baseline hazard function. 

According to Sun et al. (2006), the following test statistic could be used to test if the 

contribution from each covariate towards the multiplicative part of the above model (1) is 

appropriate. 

ଵܨ ൌ ஸ௧ஸఛݑܵ   ฬ ݊
ିଵଶ ࢛൫ࢼ;  ൯ฬ                                                                                             ሺ2ሻݐ

Where ( ; )ju tβ  is the jth component of  ( ; )u tβ , the score function and τ  is a pre-

specified constant such that ( ) 0P T τ> > . The percentiles of this test statistic can be 
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estimated empirically under a number of simulation processes discussed in Sun et al. 

(2006) and Lin, Fleming and Wei (1994). 

 

3.4  Modification of the goodness-of-fit test of Sun et al. (2006) 
Using the test proposed by Sun et al. (2006) it is possible to test the null hypothesis H0, 

whether a Cox proportional hazards model is appropriate against the alternative 

hypothesis H1, of a more general class of additive-multiplicative hazards model. 

Here H0 : ( )tα  = 0 (in equation 1) and H1 : ( ) 0tα ≠   

The same test statistic ( ) used by Sun et al. (2006) can be used for testing the Cox  

proportional hazards model in this study where  

ሻݐሺ࢛   ൌ  ሾ ࢠሺݏሻ െ ሻሿ௧ݏതሺࢠ
  ሻ                                                                                       ሺ3ሻݏሺܯ݀

is the score process for covariate z for the ith subject at time t and ˆ ( )iM t refers to the 

martingale process for subject i at time t . Similarly as Sun et al. (2006), in order to 

approximate the limiting distribution of the test statistic { ; 1,....... }iG i n=  are simulated 

from the standard normal distribution independently of the data and  ˆ ( )iM s  is replaced 

by ˆ ( )i iG M s  in the equation (3). This gives the  following result : 

0 0

ˆ ˆ[ ( ) ( )] [ ( )] [ ( ) ( )] ( ) ( )
t t

i i i i i i iz s z s d G M s G z s z s dM s G u t− = − =∫ ∫ ………….(4) 

Replacing this result (4) in the test statistic (2) it is obtained, 

෨ଵܨ ൌ ஸ௧ஸఛݑܵ   ฬ ݊
ିଵଶ ܩ ࢛൫ߚመ;     ൯ฬݐ ; ݆ ൌ 1,… ,  ሺ5ሻ                                                                

For repeated sets of normal random samples { iG  ; i =1,2……n} given the observed data, 

this gives different values of the test statistic and thus, the limiting distribution of the test 

statistic. By sorting these values in ascending order, percentiles can be obtained for the 

test statistic for each covariate. Then the p value can be obtained as, 1 1Pr[ ]p F F= > . 

Suppose  1F  test for covariate 1z  gives p value > the significance level. This indicates 

that 1z  should be included in the multiplicative part of the model, rather than in an 

additive part of the model in a general class of additive-multiplicative hazards model 
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(Sun et al., 2006 and Martinussen, 2002). Similarly all the variables can be tested for the 

goodness-of-fit. 

 

4. Analysis and Results 

4.1 Descriptive Analysis 

(a) CIF plots 

Figure 1 gives the CIF plot for the different outcomes (status).  

Figure 1 should come here. 

From the graph it can be clearly seen that the patients have the highest risk of 

experiencing death by prostate cancer.  This result prevails, except for the early months 

of follow-up (tym<10), where the patients have the highest risk for death by heart or 

vascular diseases. 

CIF graphs were plotted for each prognostic factor for the outcome death by prostate 

cancer. To give a flavour of this mode of presentation and interpretation, one such graphs 

is given for the  variable treatment. Figure 2 shows the CIF for death by Prostate cancer 

for four treatment groups indicated by “rx”. Group 2 (0.2mg estrogen) shows the highest 

level of risk for death by Prostate cancer on or before time t, except before the period of 

approximately 10 months of follow-up. The placebo group (group 1) shows the next 

highest risk in experiencing death by Prostate cancer, and this shows the highest risk 

before the period of 10 months of follow-up.  

Figure 2 should come here 

 

(b)  Log Cumulative Hazard (LCH) plots (Pintille, 2006) 

The figure 3 illustrates the LCH plots for all the six diseases/causes. For prostate cancer 

and Cerebrovascular disease the plots are approximately parallel. Also, LCH plot for 

heart and vascular diseases and lung and respiratory diseases are approximately parallel. 

The other lines violate the proportionality assumption as they appear to be crossing each 

other. 

Figure 3 should come here 
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4.2 Univariate Analysis 

Having visualized the features of the data set and having investigated each and every 

covariate and their levels separately, these covariates must be tested for their effects 

before a model is fitted.  

 

Testing the effect of covariates 

Since these tests test the difference between the CIFs for the different levels of the 

covariates, significance of the test imply significant difference and thus the effects of the 

covariates are significant. Therefore those covariates could be tested for inclusion in the 

model. 

Pepe and Mori’s method (Pepe and Mori, 1993) is chosen in this study to test for 

covariates with two levels. As for the covariates with more than two levels the method of  

Lunn (1998) is used. 

 

(a) Pepe and Mori’s method 

The test is performed on the eight variables which have two levels each. Results are given 

in table 2. 

Table 2 should come here 

 

Using the outcome in the table 2, the results of the Pepe and Mori’s test can be 

summarized as follows. In summarizing the results, covariates which are significant at a 

liberal 20% level, are selected. This is because covariates that are fairly significant could 

become significant at 5% level once the other variables are adjusted for. Results of  table 

2 indicate that out of the eight variables five variables are significant under 5% level of 

significance and one variable is significant at 20% level. The covariates “sbp” and “dbp” 

are not significant at the  20% level of significance.  

 

(b)Lunn’s method 

A program to perform this test is currently unavailable. Thus, the SAS macro used 

for the  Pepe and Mori’s test was modified by the authors. The macro should be run 

separately for each level of the covariate to obtain initial results. Having obtained 
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the initial values  intensive calculations are performed using a SAS IML program to 

obtain the final results. 

 Table 3 presents a summary of Lunn’s test applied to prognostic factors with more than 2 

levels. 

Table 3 should come here 

Results in table 3 indicate that four out of the six covariates are significant at 20% level 

of significance. It is seen that the covariates wt: weight index and ekg are not significant 

at the 20% level of significance.  

 

4.3. Modeling prostate cancer in the presence of competing risks 
In sections 4.1  the LCH plots for outcomes (Status) were not parallel. Thus the 

assumption of proportional hazards between outcomes is in doubt. In this type of 

situation a stratified Cox regression model should be used stratifying by failure types or 

the causes of death (model B of Lunn and McNeil ,1995). For modeling the variable 

status was regrouped in to two categories (death by prostate cancer and otherwise) as our 

interest was mainly to determine factors effecting survival to prostate cancer death.  For 

modeling, the data set was adjusted to suit requirements of method B proposed by Lunn 

and McNeil (1995), following the instructions given by Ali and Babiker (2002). This is 

done using ‘stcox’ in stata, as Ali and Babiker (2002) proposed. To find the best model 

using the significant covariates identified in section 4.2, a forward selection method is 

used. Here the significance of the parameter estimates based on the Wald test will be the 

criterion considered in selecting the best model. Dummy variables were created for each 

covariate with more than two levels, to represent the levels of the covariates. Interactions 

of the covariates with the type of event (δ ) and interactions of the covariates with (1 )δ−  

are created so as to obtain the terms for the reparameterized form of Lunn and McNeil’s 

(1995) model, and they are represented by “covariate_name*δ ” and 

“covariate_name*(1-δ )” respectively. For death by prostate cancer δ  =1 and δ  =0 

otherwise.  For instance, the effect of ‘stage’ for prostate cancer death is represented by; 

stageδ =stage*type 

And the effect of ‘stage’ for death by other causes is represented by; 
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Stage(1-δ )=stage*(1-type) 

 

4.3.1 Selecting the best model using forward selection 

In the selection of the most suitable model, a forward selection procedure is followed.  

Variables are selected considering the significance of the parameter estimates based on 

the Wald z statistic. Here, 

'
tan

parameter estimateWald s Z value
S dard Error

=  

   

The strategy used in selecting variables is to select the most significant interaction of 

covariate with type and include this interaction with the interaction between covariate and 

(1-type). Then proceed with the forward selection procedure, selecting the remaining 

most important covariates with type interaction and including it with the corresponding 

covariate by (1-type) interaction. In this process priority is given to selecting the 

covariate-type interactions over the covariate by (1-type) interactions because the primary 

interest is to determine risk factors for prostate cancer death and secondarily for death by 

other causes. This procedure resulted in the model   

0( ) ( ) exp(( 0.28761) (1 ) ( 0.37450) (1 )
(0.54108) 1(1 ) (0.37746) 2(1 )
( 0.33504) 1(1 ) ( 0.31386) 2(1 )
( 0.47695) 3(1 ) ( 1.38196) 1(1 )
( 0.39933) 2(1 ) (0.12

i i i

i i

i i

i i

i

h t h t ap sg
sz sz

rx rx
rx age
age

δ δ δ δ
δ δ
δ δ
δ δ
δ

= − − + − −

+ − + −

+ − − + − −

+ − − + − −

+ − − + 891) (1 )
(0.05701) 1(1 ) (0.07356) 2(1 )
(0.53188) (1 ) (0.96426) (1.4598)
( 1.41514) 1 ( 0.79709) 2 (0.83317) 1
(0.97965) 2 ( 0.05754) 3 (0.67109) 1
(0.03837)

i

i i

i i i

i i i

i i i

bm
hg hg
pf ap sg
sz sz rx

rx rx age
a

δ
δ δ
δ δ δ

δ δ δ
δ δ δ

−
+ − + −

+ − + +

+ − + − +

+ + − +

+ 2 (0.44264) (0.74674) 1
( 0.06019) 2 (0.48878) )

i i i

i i

ge bm hg
hg pf

δ δ δ
δ δ
+ +

+ − +

 

 

Where δ =1 for prostate cancer death 

and,    δ =0  for death by other causes 
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4.3.2 Goodness-of-fit test 

The goodness-of-fit test proposed by Sun et al. (2006), modified for this study, is used 

here, for the purpose of further assessing the validity of the model. Here each and every 

covariate is checked for inclusion in the multiplicative model that is used in the present 

study, rather than in a more general class of additive multiplicative models. 

H0: covariate Z1 should be included in the multiplicative part of the model 

H1:  covariate Z1 should be included in the additive part of an additive-multiplicative  

        model 

 

Using the modified goodness of fit test proposed in section 3 the test statistic, 5% critical 

value, p-value and significance was determined.  These results are given in table 4. Table 

4 indicates  that for each covariate, corresponding test statistic ( 1F ) is less than the 

critical value and p value > 0.05, (the significance level of the test). This indicates that 

each and every covariate given above should be included in the multiplicative part of the 

model rather than in an additive part of the model in a general class of additive 

multiplicative hazard model. This signifies the goodness-of-fit of the Cox model used in 

this study, over a more generalized class of additive multiplicative hazard model.   

Table 4 should come here 

 

4.3.3 Interpretation of parameter estimates 

Table 5 presents the robust parameter estimates, p values, hazard ratios and the 95% 

confidence intervals of the hazard ratios.  Here, the significant variables under 5% level 

of significance in the final model are interpreted. The interpretations are based on two 

areas; for death by prostate cancer, which is the event of interest and for death by other 

causes. For covariates with two levels, the hazard ratio represents the ratio of the hazard 

function of the higher level with respect to the lower level, which is the baseline hazard. 

For covariates with more than two levels, the hazard ratio represents the ratio of the 

hazard function of each level versus the highest/last level, which is the baseline hazard in 

this case.  

Table 5 should come here. 
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(a) Effect of treatments 

For death by prostate cancer, rx1δ  is highly significant (p value; 0.004). The hazard ratio 

2.3006 indicates that the hazard of death by prostate cancer for rx1δ  (placebo), is 

approximately 2.3 times higher than the hazard of death by using 5.0 mg of estrogen (4th 

category. The lowest level of estrogen, rx2δ , is also highly significant and has a hazard, 

2.66 times the hazard of 4th treatment category, indicating that the usage of 0.2mg of 

estrogen increases the risk of death by prostate cancer compared to 5.0mg of estrogen. 

rx3δ  is not significantly different from the highest level. When considering all other 

causes of death, the covariate rx1(1-δ ) is not significant. (p value: 0.098 ). This indicates 

that the placebo group is not significantly different from 5.0mg of estrogen. Only      

rx3(1-δ ) is significant when the other causes of death are considered. Indication of this 

is that the treatment of rx3(1-δ ); 1.0mg of estrogen, is significantly different from the 

highest level of the treatment, which is 5.0mg of estrogen. The hazard ratio 0.620674, 

indicate that the hazard is approximately 38% less for rx3(1-δ )  when compared to 4th 

level of the treatment. 

 

(b)Effect of  other prognostic factors 

For death by prostate cancer the hazard ratio for apδ  is 2.6228. This hazard ratio 

indicates that, compared to lower level of ap; Serum prostatic acid phosphatase, the 

higher level has a 2.62 times hazard of death by prostate cancer. Interpreting the other 

prognostic factors similarly it is seen that compared to 1st level of sg: lower combined 

index of stage and histological grade, 2nd level of sg: higher index, has a 4.3051 times 

hazard of death by prostate cancer. Hazard of death by prostate cancer for sz1δ , is lower 

by approximately 76% than 3rd level of sz. Hazard is 55% less for sz2δ , compared to the 

highest category of size of primary tumor. The age1 category, that is the youngest age 

group, has nearly 2 times more hazard of death by prostate cancer than the oldest age 

group which consists of patients over 70 years.  When considering the Serum hemoglobin 

level (hgδ ), the hazard of the patients of hgδ =1 (lowest level) is approximately twice 

the hazard of patients having the highest level hemoglobin (15<hg≤25). pfδ  with a 

hazard ratio of 1.6303 indicates a higher hazard for patients with limited activity, when 
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compared to normal patients. However, the significance of hgδ  and pfδ  are only 

marginal at a 5% level of significance.  

For  death by other causes sg(1-δ ) is significant  indicating that compared to patients 

with lower combined index of stage and histological grade (5-9), the patients with higher 

index have a lower hazard by an amount of 31%. Another significant prognostic variable 

is age1(1-δ ). For the other causes of death, age1(1-δ ): the youngest age group, has 

approximately 75% less hazard than the oldest age group.. Also age2(1-δ ) renders a 

significant coefficient in the final model, indicating that the hazard of age group 2 is 33% 

lower than the oldest patients, depicted by a hazard ratio of 0.6798. pf(1-δ ) is marginally 

significant, with a hazard ratio of 1.7021. Compared to patients of level 1: normal 

patients, pf(1-δ )=2: patients with limitation of activity has approximately 1.7 times 

hazard of death by other causes. The confidence interval does not include 1, suggesting 

that the hazards are significantly different.  

 

5. Conclusions and Recommendations 

The statistical packages used in this study were Stata, SAS and R. The descriptive and 

univariate analysis were done using SAS and R and Stata was used for the modeling. 

New programs were developed in SAS for conducting the Lunn’s test (Lunn, 1998) .  The 

goodness of fit test proposed by Sun et al. (2006) was modified to suit our example. This 

too required the development of new SAS programs. The study was successful in 

illustrating the use of available methodology for modeling and where ever there were 

gaps in the methodology suitable developments were made so as to give the reader a 

complete picture of analyzing competing risk data from a clinical trial. The conclusions 

obtained from the prostate cancer data are as follows.  

The patients have the highest risk of experiencing death by prostate cancer over all other 

causes of death (competing risks). This result was as anticipated because the data 

consisted of prostate cancer patients. The next highest risk was for patients with heart or 

vascular problems.  

It can be concluded that the instantaneous rate of death for prostate cancer, has been 

lowered by treatment of estrogen. Thus, it can be concluded that the survival experience 
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of patients is improved by the estrogen treatment, however there is no significant 

difference between levels 1.0mg and  5.0mg of estrogen treatment. When the other causes 

of death are considered, the  hazard was approximately 34% less for 1.0mg of estrogen 

when compared to highest level of the treatment. . Thus an estrogen level of 1.0m.g. can 

be recommended for these patients.  

When death by prostate cancer is considered; the hazard is higher for higher levels of   

Serum prostatic acid phosphatase(ap),  size of primary tumor (sz), Combined index of 

stage and histological grade (sg) and Performance rating (pf) while the hazard is lower 

for higher values of age and  Serum hemoglobin level (hg). 

The effect of the prognostic factors for other causes of death suggested that the effects of 

Combined index of stage and histological grade (sg) and Performance rating (pf) and age 

are significant. The implications of the results are that the patients with higher stage and 

histological grade and younger ages have lower hazard while the patients with limited 

activity has higher hazard compared to their respective baseline hazards. The result for 

younger age groups is sensible, as generally older patients are expected to have higher 

risk of death from any disease.  

For death by prostate cancer, the  hazard of the youngest group of patients was almost 

twice as that of oldest patients.. This is quite contrary to the conventional expectation that 

younger patients have much higher chance of escaping death from cancers. Recent 

research (Carter & Coffey; 1990) however has given some clues to support our findings 

on age with several studies showing worse prognosis of prostate cancer death for younger 

patients. 

Model validation of Cox PH models mainly involves validating the assumptions. A 

goodness-of-fit test was performed to assess the inclusion of each and every variable in 

the multiplicative part of the Cox proportional hazard model, than in the additive part of a 

more general class of additive multiplicative models. The approach used suggested the 

goodness-of-fit of the model. That is the model is adequate. 
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Table 1 – Description of  data used in the study  

 

 

Variable 

 

Notation 

 

Levels 

 

Code 

The patient number patno   

Stage stage 3 - local extension beyond 

the prostate gland 

1 

4 - distant metastases, 

elevated acid phosphatase 

or both 

2 

Treatments of estrogen Rx placebo 1 

0.2mg estrogen 2 

1.0mg estrogen 3 

5.0mg estrogen 4 

Age (in years) Age ≤60 1 

61 - 70 2 

>70 3 

Weight index = wt(kg) – ht(cm) + 200 Wt <85 1 

85-104 2 

105-124 3 

>125 4 

Performance rating Pf normal 1 

 confined to bed 

(‘limitation of activity’) 

2 

History of cardiovascular disease Hx yes 0 

no 1 

Systolic blood pressure/10 Sbp <16 1 

≥16 2 

Diastolic blood pressure/10 Dbp <9 1 

≥9 2 
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Ekg Ekg normal 1 

benign 2 

rhythmic disturb  3 

Heart block or strain 4 

MI 5 

Serum hemoglobin(g/100ml) Hg ≤10 1 

10<hg≤15 2 

15<hg≤25 3 

Size of primary tumor (cm2) Sz 0-19 1 

20-39 2 

40-69 3 

Combined index of stage and 

histological grade 

Sg 5-9 1 

10-15 2 

Serum Prostatic Acid Phosphatase Ap ≤10 1 

>10 2 

Bone Metastases Bm 0 0 

1 1 

Date on study sdate   

The status given by survival from 

different causes (Outcome) 

status alive 0 

 dead-Prostate cancer 1 

 dead-cerebrovascular 2 

 dead-heart or vascular 

problems 

3 

 dead-other cancer 4 

   

 dead- non-cancer 5 

 dead-lung and respiratory 

diseases 

6 

Months of follow-up  dtime 

(tym) 
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Table 2 – Results of Pepe and Mori’s test 

Covariate Test Statistic p-value Significance  

Stage 61.5996 0.00000 Significant at 1% level 

Pf 4.0197 0.04497 Significant at 5% level  

Hx 1.9096 0.16701 Significant at 20% level 

Sbp 0.2633 0.60786 Not significant at 20% level 

Dbp 0.7763 0.37826 Not significant at 20% level 

Sg 80.4763 0.00000 Significant at 1% level 

Ap 28.8007 0.00000 Significant at 1% level 

Bm 28.8799 0.00000 Significant at 1% level 
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Table 3 – Results of Lunn’s test 

Covariate Test statistic Degrees 

of 

freedom

 p-value significance 

Rx 5.8185 3 7.8147 0.1208 Significant at 20% level 

age 4.7641 2 5.9915 0.0677 Significant at 20% level 

wt 2.2428 3 7.8147 0.5236 Not significant at 20% level 

ekg 0.6091 4 9.4877 0.9621 Not significant at 20% level 

hg 9.7263 2 5.9915 0.0077 Significant at 1% level  

Sz 21.7773 2 5.9915 0.0000 Significant at 1% level 
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Table 4- Results of the Goodness-of-fit test 

Covariate  
(Test Statistic) 

5% Critical value 

based on simulation 

p-

value 

Significance 

ap  0.0189729 0.060016 1.000 Not Significant 

sg  0.0113187 0.036047 1.000 Not Significant 

sz1  0.0152675 0.047266 1.000 Not Significant 

sz2  0.0156286 0.047835 1.000 Not Significant 

rx1  0.0142989 0.043791 1.000 Not Significant 

rx2  0.0145014 0.044779 1.000 Not Significant 

rx3  0.0189729 0.049644 1.000 Not Significant 

age1  0.0178686 0.047938 0.919 Not Significant 

age2  0.0156982 0.046057 1.000 Not Significant 

bm  0.0163174 0.047328 0.999 Not Significant 

hg1  0.0179354 0.044959 0.906 Not Significant 

hg2  0.0155778 0.044359 1.000 Not Significant 

pf  0.0166199 0.046938 0.999 Not Significant 

ap  0.0271055 0.055880 0.616 Not Significant 

sg  0.0175702 0.044750 0.965 Not Significant 

sz1  0.0242253 0.050851 0.789 Not Significant 

sz2  0.0249778 0.053112 0.808 Not Significant 

rx1  0.0289328 0.058274 0.700 Not Significant 

rx2  0.0309362 0.060840 0.496 Not Significant 

rx3  0.0169832 0.043541 0.993 Not Significant 

age1  0.0176765 0.041383 0.942 Not Significant 

age2  0.0229219 0.048791 0.894 Not Significant 

bm  0.0265907 0.054490 0.611 Not Significant 

hg1  0.0267856 0.052283 0.552 Not Significant 

hg2  0.0229460 0.044577 0.837 Not Significant 

pf  0.0281105 0.054631 0.658 Not Significant 
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Table 5- Details of the final model 

Covariates Coefficients 

(b) 

p value Hazard 

ratio  

[95% Confidence Interval  

of  ] 

ap  -0.28761 0.382 0.750054 0.393545 1.429536

sg  -0.37450 0.022 0.687633 0.499534 0.946561

sz1  0.54108 0.310 1.717861 0.604375 4.882855

sz2  0.37746 0.499 1.458575 0.487863 4.360732

rx1  -0.33504 0.098 0.715309 0.480864 1.064058

rx2  -0.31386 0.119 0.730621 0.492653 1.083525

rx3  -0.47695 0.021 0.620674 0.413507 0.931639

age1  -1.38196 0.000 0.251086 0.124838 0.505009

age2  -0.39933 0.030 0.670769 0.467456 0.962511

bm  0.12891 0.629 1.137588 0.673889 1.920355

hg1  0.05701 0.886 1.058666 0.485911 2.306566

hg2  0.07356 0.675 1.076333 0.763097 1.518146

pf  0.53188 0.043 1.702129 1.016525 2.850174

ap  0.96426 0.000 2.622846 1.691896 4.066082

sg  1.45980 0.000 4.305098 2.402116 7.715567

sz1  -1.41514 0.000 0.242892 0.127871 0.461368

sz2  -0.79709 0.013 0.450638 0.240093 0.845819

rx1  0.83317 0.004 2.300600 1.307321 4.048555

rx2  0.97965 0.001 2.663524 1.528918 4.640073

rx3  -0.05754 0.849 0.944084 0.521341 1.709635

age1  0.67109 0.001 1.956369 1.309218 2.923437

age2  0.03837 0.885 1.039116 0.619105 1.744067

bm  0.44264 0.050 1.556812 0.999370 2.425166

hg1  0.74674 0.049 2.110110 1.003596 4.436652

hg2  -0.06019 0.823 0.941586 0.554887 1.597772

pf  0.48878 0.049 1.630326 1.001982 2.652705



25 
 

CI F

t ym

0 10 20 30 40 50 60 70 80

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: CIF for all diseases 

1 – Prostate Cancer 

2 – Cerebrovascular 

3 – Heart or vascular 

4 – Other cancer 

5 – Non cancer 

6 – Lung and 
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Figure 2: CIF for event 1 by rx 

1 – Placebo (126) 

2 – 0.2mg 

estrogen(121) 

3 – 1.0mg 

estrogen(125) 

4 – 5.0mg 

estrogen(123) 
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Figure 3: LCH plot for all diseases 

 


