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Abstract— Sandwich Variance Estimation (SVE) is a method of
estimating variances of miss-specified models and has been
popular for analyzing -correlated/non-independent data to
improve the variance estimation of models fitted for such data.
This gained higher popularity when specialized models were not
been developed for correlated data whereas with the development
of statistical models for correlated data, the use of SVE in such
models was at argument among the researches. Generalized
Linear Mixed Models (GLMMs) are such models defined for
correlated data. But, instances can be found in the literature
where GLMMs have shown up model miss-specifications for
correlated data. This brought forward the applicability of using
SVE in GLMM:s since SVE is a method of estimating variances of
miss-specified models. Due to the dearth of literature on
evaluating the impact of using SVE in GLMMS, this study was
undertaken which used both simulated and actual data to
evaluate the necessity of using SVE in GLMMs for analyzing
Binary correlated data. Type I Error and power of the Type III
F-test for fixed effects of the GLMM:s fitted for both simulated
and actual data showed up better results when GLMMs were
fitted with SVE than fitted with the standard method of variance
estimation. Further, simulation study demonstrated that at
higher level of correlation present in the data, the necessity of
using SVE in GLMMs becomes more desirable. Further, it was
revealed that classical estimator of SVE perform poorly at small
sample sizes (n<= 50) whereas small sample adjusted versions of
the SVE showed up better performance at small sample sizes.
Thus, this study highlighted that careful use of SVE in GLMMs
can help on improving its functionality under model miss-
specifications.
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I INTRODUCTION

The presence of clusters or groups within a dataset is a
frequently encountered scenario in data analysis. For example,
the data from the members of the same family exhibit more
similar characteristics than members from different families.
Repeated measures data or longitudinal data pertains to
another such situation where the data are clustered within the
individuals that are being observed repeatedly over time. The
collection of repeated measurements of an individual creates a
cluster of observations that are similar to each other while the
observations between two individuals are mostly not related to
each other. In statistical terminology, such data are being
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termed as non-independent data or else correlated/clustered
data. Thus, statistical techniques deployed for analyzing such
data should not assume independence among the observations
in the data. This becomes a challenging task since most of the
commonly used statistical methods are being constrained on
independent data.

Reference [1] pointed out ‘statistical inference must control
for clustering, as failure to do so can lead to under-estimated
standard errors and consequent over-rejection using standard
hypothesis tests’. Therefore, the methods that explicitly
account for clustering outperforms when confronted with
selecting an approach for analyzing clustered/correlated data.
Among the handful of statistical methods that explicitly
account for correlated data, this research is intended to explore
the methods of robust standard errors which is often named as
Sandwich Variance Estimation (SVE) within the class of
Generalized Linear Mixed Models (GLMMs) for modeling
correlated data.

The method of Sandwich Variance Estimation (SVE) was
initially proposed by [2] where he discussed the use of
maximum likelihood estimation under non-standard conditions
and on how to improve the properties of the maximum
likelihood estimates under model misspecifications.. SVE can
be applied for correlated data in such a way that it adjusts the
standard errors of the model parameters to suit the correlated
structure in the data. This correction is generalized by [3] for
independent heteroskedastic errors where in correlated data,
SVEs are used for non-independent heteroskedastic data
(errors) which is the case of this study. Basically, this method
can improve only the standard errors of the model parameters,
but not the parameter estimates of the models and hence
improve the p-values of the model parameters which in turn
improves model adequacy tests. Lately, new statistical models
were developed which allows the presence of clustering in the
model definition itself. Therefore, such models are intended to
provide both parameter estimates and standard errors that are
adjusted for clustering/correlation in accordance with the
model fitted . The class of mixed models is one such modeling
approach which facilitates modeling correlated data.
Generalized Linear Mixed Models (GLMMs) ([4], [5]) are an
extension of mixed models which has more flexibility than the
general mixed models. Particularly, GLMMs can model
correlated data with response variables being distributed in the
exponential family.
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With the development of such specialized modeling
approaches, the necessity and the popularity of sandwich
variance estimation for variance estimation of such models
became debatable.  But few studies in the literature
demonstrated intuitive results to exercise a comprehensive
evaluation of this phenomenon of using SVE in GLMMs.
Reference [6] have highlighted on miss-specifications that are
probable with GLMMs mainly due to the errors/disparities
that are prone with the definition of random effect used for
representing correlation structure in data. Reference [7] have
provided insight into usage of Sandwich Variance Estimation
in Generalized Linear Mixed Models for analyzing two data
sets where they made a comparison between SVE and
standard method of variance estimation of GLMMSs for the
two datasets they considered. Reference [8] emphasized that
miss specifications of GLMMs are mainly due to the random
effect definition of the models which are difficult to observe
and hence difficult to check the assumption of random effects.
Reference [8] have used only the classical method of SVE and
have claimed that Sandwich correction for the variance
estimation have not been able to show up better performance
under model miss-specification. They have wrapped up this
scenario mentioning that a full discussion of this issue
(sandwich correction in GLMMs) overtakes the objectives of
their research where they suggest on alternative approaches
for analyzing non-Gaussian correlated data such as use of
nonparametric distribution for random effect distribution,
finite mixture of normal and etc. Reference [7] have
highlighted that SVE can be used indirectly as a diagnostic
tool for assessing the misspecification of the random effects,
but their findings were limited for two isolated data sets being
analyzed with using SVE in GLMMs. Thus, this background
was innate for a better evaluation of the intended phenomena
which gave rise to this study with the objective of evaluating
comprehensively the usage of Sandwich Variance Estimation
in Generalized Linear Mixed Models for which both a large
scale simulation study and an analysis of actual data was
conducted.

The designing of the simulation study accommodated various
correlation levels and various sample sizes (small, moderate,
large) to enable a comprehensive examination of the intended
scenario. Moreover, in addition to the classical form of the
SVE, small sample adjusted version/s of the SVE were also
considered which was not found in the literature where the use
of SVE in GLMMs was looked at. Therefore, the findings of
this study would provide a complete evaluation of the usage of
SVE in GLMMs in terms of the correlation present in the data,
in terms of sample size and in terms of the form of the SVE.
The impact resulted by using SVE (classical and small sample
adjusted) in GLMMs was assessed by comparing Power and
Type I error of the type III F-test for fixed effects in GLMMs.

1L

The correlated data scenario simulated was of repeated
measures data with Binary repeated measurements for each
individual. The algorithm used was developed according to
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the algorithms proposed by [9] which was explained in detail
by [10].

Three correlated binary variables were simulated for each
individual, each taking the values 0 or 1. Let these 3 variables
be denoted by Y, X; and X,respectively, with distribution of
variable Y; be given as Py; = PR (Y;=0). The joint
distribution of Y;and X is denoted by Py;x; = Pr(Y =0, X;=0)
which can be fully determined by the marginal and conditional
distributions Py, and P(X;=0| Y,=0)=Px,y; using the theorem
X152 The rest

of conditional probabilities given by P xjy;= o
i

of the probabilities can be derived using Bayes theorem. As
[9] had shown, the correlation between the two binary

. . —Fyy P
variables Y; and X is given by #yys = Drax ,,P“ =
o Py (1—Pyq)Pyy (1-Fry]

The data were simulated for two distinct scenarios of having
an equal probability of success (probability of getting zero) at
the three periods and to have unequal probability of success at
the three periods. The data simulated to have equal probability
of success at each period is regarded as data under the null
hypotheses where the effect of period is similar at each period
and the data simulated for having unequal probabilities at each
period is regarded as data under the alternative hypothesis of
having different effect of period [10].

Rather than depending on a single set of correlations among
the three periods, various correlation levels were implemented.
To vary the level of correlation in the data, the conditional
probabilities between the three periods were varied where the
conditional probability of success in the second period given
that a success occurred in the first period was varied among
three values 0.7, 0.8 and 0.9. The probability of success in the
third period given that the first two periods were successes
was also varied similarly. These conditional probabilities (.7,.8
and .9) were selected so as to depict low, moderate and high
positive correlation between the periods which is usually the
case in repeated measures data. At each level of correlation,
five different sample sizes (20, 50, 100, 250, 500) were
simulated. Hence, the use of SVE in GLMMs was examined at
varying levels of correlation in the data (that were
representative of repeated measures data structures) and at
varying sample sizes enabling a comprehensive examination
of the performance of the GLMMs with SVE. The data were
simulated both under the null and alternative hypothesis.
Under the null hypotheses, the success probability of each of
the three periods was taken to be 0.5 which impose the period
to be affected similarly for the binary response at each period
(i.e. no period effect to the response of interest). Under the
alternative hypothesis, the success probabilities of the three
periods were made to be different among the three time
periods imposing an effect of the period to the response of
interest. For each scenario, 1000 datasets were simulated.
Then the simulated data were analyzed using GLMMs with
and without SVE. Both the classical SVE approach [3] and
Mancl-DeRouen estimator of SVE [11] were examined. The
SAS procedure; PROC GLIMMIX was used for fitting
GLMMs where the significance of the fixed effects (i.e.
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period) are tested using Type IIl F-tests. The hypotheses
associated with the test are as follows.

Hy: Period effects are equal

H;: At least one period effect is significantly different

from the others

The data simulated under the null hypothesis are realizations
of the case where the effect of the period is similar at each
time period. Thus, the proportion of rejections of the null
hypothesis for data simulated under the null hypothesis gives
rise to the type I error of the test. In contrast, the data
simulated under the alternative hypothesis are based on having
different period effects at each time point. Therefore, the
proportion of rejections of the null hypothesis for those data
sets gives rise to power of the test. Finally, power and the type
I error of the Type III F-tests were compared between the
three types of GLMMs at each sample size, at each
correlation level to inspect the impact of adopting SVE in
GLMMs for the repeated measures scenario.

III.

Theory and methodology behind this study mainly consist of
Sandwich Variance Estimation(SVE), Generalized Linear
Mixed Modes (GLMMs) and simulation of Binary repeated
measures data. The design of the simulation study was briefly
explained in the above section above. Therefore, theory
behind SVE and GLMMs is explained in this section.

A. Generalized Linear Mixed Models (GLMMs) [12]

The class of mixed models which consists Linear Mixed
Models and Generalized Linear Mixed Models inherent the
capability of modeling correlated/clustered data by specifying
the linear predictor with an additional component that
represents the clusters/groups in the data, whereas in non-
mixed models the linear predictor comprises only with the
explanatory variables that are regarded as constant or fixed
effects. The specification of clusters/groups in the linear
predictor is done by including the effect of a cluster as a
random effect which is assumed to follow a particular
distribution. Mostly, the distribution of the cluster/group effect
is assumed to be normally distributed. GLMMs are an
extension to the Linear Mixed Models which can
accommodate Non-Gaussian data. The type of the GLMM
considered in this study has a Binary response and the random
effects (i.e clusters) were assumed to be Normally distributed
with a mean zero and an unknown variance. The general form
of a GLMM can be explained as follows.
Y=X8+Zir+¢ (1}
Where,
¥is a N % 1column vector of the responses,
X is a N ¥ p matrix for ‘p’ fixed effects,
B isap ® 1 vector of fixed effect regression
coefficients,
Z isa N X j design matrix for ‘> random effects,
¥isaj %1 vector of the random effects,
¥ is assumed to follow normal distribution with
yr~Normal(0,G)

THEORY AND METHODOLOGY

40

£is a ¥ % lcolumn vector of residuals assumed to be
Normally distributed,

By default, GLMMs are fitted using the method of Residual
Log Pseudo Likelihood (RSPL) for parameter estimation in
PROC GLIMMIX (SAS/STAT(R) 9.2 User's Guide) for
which the pseudo response model is considered as follows.

P=XE+iy+s (2}
The resultant equations for fixed effects parameter estimates
and for their variances are given as:

B=@ vy ) Xv) e (3)
P P
v(g) = re(d) xn° )

Where ¥{8) denotes the marginal variance in the linear mixed
pseudo-model. The following sections are streamlined for
deriving the equations for variances of fixed effect parameters
of GLMMs when SVE is used as the method of variance
estimation.

B.  Sandwich Variance Estimation(SVE)

As per the corollary proposed by [2] which claimed that if the
expected value of an estimating equation E{i{x,&;)) has a
nonsingular derivative A at &;, then for estimating function
Tolxy.x5.... %) or simply T, of §;, it can be shown that the
asymptotic distribution ofv'n (T, — 8, ~Normal(0,¥,) where
¥, = A"'BA™T is the sandwich estimator. Note that B is the
covariance matrix of the estimating equation and 4 is the
Hessian matrix for the estimating equation. As explained in
[13], though Huber’s papers states that the above estimator in
terms of maximum likelihood models, the required
assumptions of the sandwich estimator allows the applying
SVE on any type of estimating equations of the form
T (x,8) =0 , that is for models where the parameter
estimation is done by setting the estimating equation to zero,
which doesn’t require that the estimation equation to be a
derivative of a log-likelihood.

When a Generalized Linear Mixed Models is fitted for
analyzing a correlated data set, i.e data with random effects,
the default method of estimation is the method of Residual
Log Pseudo Likelihood (RSPL). The general form of the
sandwich variance estimator for fixed effects estimated in
GLMMs is:

m a
¥, =cx ﬁ(z AT Fe, gggfgim{} g o
=1 ¥

where & = ¥ — i, 2 =(D'Z71DY  m isthe number of
independent sampling units(i.e clusters)

But, for a GLMM with RSPL following substitutions are
applicable

V=P, I-=ViE, D-=X  T-X8
For the classical sandwich variance estimator, above equation
gets simplified to:

- .
=8 (Z ﬁi‘fgigig;‘z‘;‘ﬁi> & ®
i=t ’
Though the classical SVE was found to improve the error rates
for large sample sizes it was found to perform poorly for small
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sample sizes. As [11] highlights, “robust estimator may be
biased when the when the number of subjects is small since
ordinary residuals are used for estimating ...”. Therefore,
subsequently several other authors have made corrections to
the classical SVE to deal with small(finite) sample sizes.
Referece [14] have proposed such finite sample corrected SVE
within linear regression models fitted with Least Squared
estimation method where adjustment is done to eliminate bais
of the SVE particluarly at small sample sizes. Subsequently,
[11] proposed a similar modified version for SVE within
Generalized Estimating Equations models fitted for clustered
data. This laid the pathway for a small sample adjusted version
applicable in GLMMS which can be obtained by setting
=14 =Iland E =0 —-HT)* [15].

IV. SIMULATION RESULTS

A.  Simulations Under the null hypothesis

The data simulated under the null hypothesis had an equal
probability of success (p=0.5) at each period for each
individual. The GLMM fitted consisted of a binary response
variable while period was fitted as a factor with 3 levels (fixed
effect). Three types of GLMMs i.e with the standard method
of variance estimation, classical SVE and small sample SVE,
were considered. Type III F-test, tests whether the ‘period’
effect is significantly different at three periods. As
measurements of comparison the Type I Error and Power of
the test were considered. Table 1 presents the Type I Errors
across the various sample sizes at each level of correlation.
The conditional probabilities of success among the three
periods were varied from .7, .8 to .9 to vary the correlation
between the three periods and resulted correlations are given
in the second column of the Table 1. The last three columns
presents the Type I Errors associated with the GLMMs fitted
respectively with standard variance estimation, classical SVE
and small sample adjusted SVE.

It is noteworthy that the Type I Errors of the GLMMs fitted
with standard method of variance estimation were all below
the 95% lower limit of the confidence interval for a 5% error
rate (.036, 064) irrespective of the level of correlation and
irrespective to the sample size which can be considered as an
model miss-specification of the GLMM fitted for the data.
That is, the Type I Errors for GLMM fitted with standard
method of variance estimation resulted to be conservative
under model miss specification. Moreover, at high correlation
levels (p=0.9), the tendency to produce conservative Type I
Errors is being increased highly as resulted Type I Errors were
very small. In contrast, Type I Errors of GLMMs fitted with
classical SVE were maintained within the 95% confidence
interval of 5% error rate at sample sizes of 50 and above when
the at low and moderate correlation levels (p=.7 and p=.8)
while at high correlation level (p=.9) the classical SVE helped
to maintain the error rate within the desired range at sample
sizes of 100 or above. That is, the improvement to GLMMs
that can be achieved by using classical SVE constraints with

41

the level of correlation present in the data and with sample
sizes where classical SVE could not provide improved results
that the standard method of variance estimation at small
samples and this inability get more viable at higher correlation
levels. Therefore, adjustments for the classical SVE were
considered and the sample form of SVE suggested by [11] was
applied where last column of the Table 1 presents the Type I
Error observed when GLMMs were fitted with small sample
adjusted version of the SVE of [11]. Quite satisfactorily, small
sample adjustment of [11] could maintained the Type I Errors
within the 95% confidence interval of the 5% error rate at all
the sample sizes when the level of correlation was low and
moderate (p=.7 and p=.8) while with high correlation (p=.9)
the resulted Type I Errors for the sample of size 20 was
outside the 95% confidence interval. Therefore, the
improvement of the Type I Errors resulted by small sample
adjustment for SVE surpass the performance of standard
GLMMSs. Conservative Type I Errors obtained for standard
GLMMs revealed the miss-specifications/errors viable in
standard GLMMSs for the data considered and the
improvement achieved by applying Sandwich correction
confirms that SVE can be used as a method of confronting
model miss-specifications of GLMMs for analyzing
clustered/correlated data.
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Table 1: Type | Errors of the Type Ill F-test

Conditional Correlations among Sample Type | Error
Probability the periods size
Standard GLMM GLMM with GLMM with
Classical SVE small sample

SVE

0.7 r(y1,x1)=0.4 20 0.015 0.068 0.057
r(x1,x2)=.34 50 0.022 0.062 0.057

r(yl,x2)=.22 100 0.014 0.039 0.061
250 0.022 0.041 0.054

500 0.018 0.05 0.048

0.8 r(y1,x1)=0.6 20 0.01 0.088 0.055
r(x1,x2)= .44 50 0.007 0.063 0.047

r(yl,x2)=.52 100 0.009 0.056 0.059

250 0.01 0.053 0.057

500 0.012 0.05 0.035

0.9 r(y1,x1)=0.8 20 0.002 0.1 0.023
r(x1,x2)= .43 50 0.002 0.08 0.05

r(yl,x2)=.74 100 0.002 .061 0.055

250 0.001 0.057 0.06

500 0 0.059 0.055

B.  Simulation U der the Alternative Hypothesis

The data simulated under the alternative hypothesis consists of
realizations of the situations where the period effect is not
similar at the three time periods. That is, there is an effect of
the period on the response of interest. Thus, the proportion of
rejections of the null hypothesis of the Type III F-test relates
to the Power of the test. The Power of the test at each level of
correlation across the varying sample sizes are presented in the
Table 2.

When considered Table 2, the power of the test with standard
method of variance estimation, can be seen to have reached
the maximum level at large sample of sizes 250 and above
with low and mild correlation levels in the data (p=.7 and
p=-8) while at high correlation levels ( p=.9) the power of the
Type III F-test failed to achieve the maximum even at large
sample sizes which indicates that standard method of variance
estimation failed to confront model miss-specifications at
small sample sizes and at higher levels of correlations. As per

)

the Power results achieved by using classical SVE, a marginal
improvement of the Power can be seen at small sizes whereas
at large sample sizes classical SVE also gained the maximum
power. The last column of the table presents the power
attained by using small sample adjusted SVE into the GLMM
which showed that small sample adjustment proposed by
small sample adjustment has not been able to provide a
significant improvement of the Power at small sample sizes
though it improved the Type I Errors at small sample sizes.
Reasoning for this will be elaborated at the Discussion section.
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Table 2 : Power Results of the Type Il F-test

Conditional Correlations among Sample Power
Probability the periods size
Standard GLMM with GLMM with
GLMM Classical SVE | small sample

SVE
0.7 r(y1,x1)=0.35 20 0.13 0.27 0.211
r(x1,x2)=.33 50 0.43 0.55 0.556
rlyl,x2)=.19 100 0.84 0.91 0.867

250 .99 1 1

500 1 1 1
0.8 r(yl,x1)=0.54 20 0.061 0.24 0.134
r(x1,x2)=.53 50 0.26 0.46 0.409
r(yl,x2)= .35 100 0.59 0.74 0.725
250 0.97 0.99 0.99

500 1 1 1
0.9 r(y1,x1)=0.76 20 0.005 0.152 0.09
r(x1,x2)=.72 50 0.034 0.266 0.275
rlyl,x2) =.36 100 0.148 0.467 0.477
250 0.556 0.874 0.874
500 0.94 0.99 0.994

V. ANEXAMPLE BASED ON REAL DATA

The preferred spelling of the word “acknowledgment” in
America is without an “e” after the “g”. Avoid the stilted
expression, “One of us (R. B. G.) thanks . . .” Instead, try “R.
B. G. thanks”. Put sponsor acknowledgments in the unnum-

bered footnote on the first page.

To envisage the impact of using SVE in GLMMs in real time
data, a dataset from a CARDIA study conducted in US which
evaluated the smoking status among young adults repeatedly
for a period of 10 years was downloaded from JASA data
archive (htip:/lib.stat.cmu.edu/jasadata/, retrieved on 8% July
2015).This data was from [16] where Generalized Estimating
Equations methodology is being used by them to analyze the
data. A complete analysis of the data is out of the scope of this
study whereas the analysis will be restricted on to identifying
the feasibility of using SVE in GLMMs for analyzing
correlated Binary data. For simplicity, the only predictor
variable used was the period or the visit on which the smoking
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status was evaluated and considered only three visits which
were scheduled at years 0, 2 and 5 to ally with the simulated
data scenario. The impact made by variance estimation
methodology was gauged by the comparing the p-values of the
type III F-test and by comparing the standard error estimates
of the fixed effects of the GLMMs. The type III F-testes for
testing whether there is a significant effect of the period to the
smoking status of the individuals resulted p-values of 0.2247,
0.0313 and 0.0314 respectively for GLMMs fitted with
standard method of variance estimation, classical SVE and
small sample adjusted SVE. So, it should be noted that the
resulted p-values resulted with SVE (both with classical and
small sample adjusted) were significant and quite similar in
quantity while in contrast the standard variance estimation
produced insignificant p-value. This discrepancy itself can be
considered as an evidence for highlighting the impact made by
adopting SVE in GLMMs. A similar judgment is been
proposed by [17] in linear regression frame work where they
have recommended that “data analysts should correct for
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heteroscedasticity  using  Heteroscedasticity =~ Consistent
Standard ErrorstHCCM) whenever there is reason to suspect
heteroscedasticity” where HCCM is another term used to
name SVE ,particularly in linear regression models. As the
cause for classical SVE and small sample adjusted SVE to
yield similar p-values, it can be noted that the data set
consisted of 5078 young adults which is undoubtedly a large
sample and hence an identical performance can be expected
from classical SVE and small sample adjusted SVE.

Following table is presented with standard error estimates of
the fixed effect parameters under each variance estimation
method.

Table 3: Standard Errors Estimated

Parameter Estimate Standard errors

Standard | GLMM GLMM

GLMM with with

Classical Small
SVE Sample

SVE

Intercept 1.22 0.053 0.045 0.045

Year 0 -0.10 0.059 0.039 0.039

Year -0.05 0.061 0.037 0.039

Year 0 - - -

Thus, it can be clearly seen that standard error estimates of
standard method of variance estimation had resulted standard
errors that differ significantly to those of SVEs while the two
types of SVEs resulted similar standard errors. The authors
have claimed in the literature that SVE can be used as a
diagnostic tool for assessing the miss-specifications of
GLMMs in such a way that if the adoption of SVE resulted
significantly different standard errors than those with model
based (standard) standard errors, it can be regarded as a miss-
specification of the mixed model to capture the correlation
structure that actually exist in the data. In summary, the
indication given by this example was an eye-opener to
envisage how Sandwich correction can improve GLMMs
while serving as a diagnosis tool for identifying model miss-
specification which are usually being claimed as unobservable
since the effect of the random effects are not measurable.

VL

The objective of this study was formulated as a resultant of an
in-depth literature review under taken on methods of
analyzing correlated data and the study focused on evaluating
the feasibility of using Sandwich Variance Estimation in
Generalized Linear Mixed Models. The literature highlighted
that method of SVE as a method of adjusting the standard
errors of model parameter estimates to adjust for the
correlation in the data while GLMM is a statistical modeling
approach for fitting correlated data. This literature brought
forward the feasibility of using SVE in GLMMs for which the
related literature was very little. Thus, this study directed at
examining the feasibility of using SVE in GLMMs for which a
simulation study was identified to be well suitable. The
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repeated measures data scenario simulated had a Binary
response variable with three repeated measurements for three
time periods. A Binary GLMM was fitted, keeping all the
options at the default settings while only the method of
variance estimation was modified according to SVE. A
significant difference of the functionality of GLMMs fitted for
simulated data was examined with respect to the Type I Error
of the type III F-test of the fixed effects while Power of the
test did not show up significant improvement with the
adoption of SVE. The simulation results demonstrated that
Type I Errors of the standard GLMM were conservative
irrespective of the level of correlation of the repeated
measurements and irrespective of the sample sizes. It should
be mentioned here that only three correlation levels were
imposed to the data considering the nature of correlation that
is viable in repeated measures data. The adoption of classical
SVE maintained the Type I Errors within the desired
confidence interval for a 5% error at larger sample sizes while
the small sample adjusted SVE resulted the best performance
of the GLMM s fitted since it maintained Type I Errors within
the confidence interval even at small sample size at all the
three levels of correlations imposed. Such an improved
performance of GLMMs was not achieved with respect to the
power of the Type III F-test since the results showed that only
a marginal improvement in the power with GLMMs fitted
with SVE (classical and small sample) than the standard
GLMM. Both standard GLMMs and GLMMs with classical
SVE reached maximum power at large sample sizes.

As reasons for the above behavior, it can be added that [17]
have also shown that classical SVE provide incorrect
inferences when the sample sizes is less than 250 when SVE is
used in Linear Regression Models and they highlight that
special versions of SVE work well even for samples as small
as 25. Similarly the findings of this study also demonstrated a
similar scenario where the use of classical SVE in Binary
GLMMs performed poorly at samples of 20 and 50 whereas
small sample adjusted SVE helped to correct this.

With respect to the power of the type II F-test, standard
GLMM and GLMM with classical SVE attained maximum
power at large sample sizes while only marginal improvement
was achieved by using classical SVE at small sample sizes. A
comparison of the power results attained with classical SVE
and small sample adjusted SVE, it was observed classical SVE
resulted in close better power results compared to that of small
sample adjusted SVE. As the small sample adjusted SVE
improves the error rates significantly over the classical
approach particularly for small samples and there is only
marginal differences in power between the two approaches,
the small sample adjustment proposed by [11] can be
recommended.

The analysis of the actual data set also revealed that the
adoption of SVE in GLMMs impacted favorably on standard
error estimates of the fixed effect parameters and indicated
that SVE can be used even as an diagnostic tool for gauging
model miss-specification which are usually not observable
since random effect are not measurable as per the definition of
GLMMs.
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VIL

This study evaluated the feasibility of using Sandwich
Variance Estimation in Generalized Linear Mixed Models for
Binary Repeated Measures Data. The results of the simulation
study revealed that adoption of SVE in GLMMs would further
improve its functionality. The type of the GLMM fitted in this
study dealt with default options for parameter estimation
(RSPL), integral approximations (Newton-Raphson with
Ridging), Degrees of Freedom Method (Containment) and etc.
Therefore, it can be recommended to examine the feasibility
of SVE in GLMMs by adjusting above default settings
appropriately and see whether the results of the simulations
shows up a significant difference or not.

CONCLUSIONS AND RECOMMENDATIONS
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