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Abstract

This dissertation sets a novel approach to analyze second generation wavelet schemes by providing

a basis function and decomposition method. Moreover, the representation of gray–scale images

with normal multiresolution approximation in less smooth spaces, such as Besov spaces, Bα
p,q(Ω),

1 ≤ p, q ≤ ∞ for 0 < α < 1, where Ω be a Lipschitz domain in R
d, d ≥ 1, and d is odd.

The assumption is that a normal multiresolution approximation is parameterized in a regular

interval, and then with the Lagrangian interpolation formula a basis function is constructed by

using Hardy’s multiquadric function. The basis function is shift–invariant and, generates a space

Sj = span{ϕ(2jx− k) : for all x ∈ R and for all k ∈ Z} for j ∈ N0. Approximation properties

of this setting is explored in Sobolev spaces.

Since the above basis function does not satisfy the requirements of a compact support; it is

resort to consider the second divided difference of the basis function. Thus, the wavelet transform

on the real line is defined on the basis of quasi–interpolating basis function. In addition, the

local properties of the function are also studied; for instance, the case of pointwise convergence.

As such, the above stated basis function is generalized to multivariate setting in a bounded

simply connected domain Ω ⊂ R
d, d ≥ 1, with the localization concept of multiquadric functions

and 1–unisolvence property. Thus, the characterization of the Besov spaces, Bα
p,q(Ω), in terms of

vertical offset coefficients of functions with respect to these bases. As a consequence, it is seen

that Horizon images with 0 < α < 1 are characterized by the coefficients with respect to these

normal wavelet basis functions.

As an application of the multiquadric basis function, an efficient image compression scheme,

called Normal Multiresolution Triangulation Interpolation scheme, is presented in this disserta-

tion.
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Notations and Inequalities

We shall use the following standard notation:

N – the set of all natural numbers,

N0 – the set of all nonnegative integers,

Z – the set of all integers,

R – the set of all real numbers,

N
n
0 = N0 × · · · ×N0︸ ︷︷ ︸

n

– the set of multi–indices (n is the natural number which will be used

exclusively to denote the dimension),

R
n = R× · · · ×R︸ ︷︷ ︸

n

,

B(x, r) – the open ball of radius r > 0 centered at the point x ∈ R
n,

Ωc (Ω ⊂ R
n) – the complement of Ω in R

n,

Ω (Ω ⊂ R
n) – the closure of Ω,

Ω (Ω ⊂ R
n) – the interior of Ω.

For an arbitrary nonempty set Ω ⊂ R
n we shall denote by:

C(Ω)– the space of functions continuous on Ω,

Cb(Ω)– the Banach space of functions continuous and bounded on Ω with the norm

‖f‖ = sup
x∈Ω

|f(x)|.

For a measurable nonempty set Ω ⊂ R
n we shall denote by:

Lp(Ω) (1 ≤ p < ∞)– the Banach space of functions f measurable on Ω such that the norm

‖f‖Lp(Ω) =

(∫

Ω
|f |pdx

) 1

p

< ∞,

L∞(Ω) – the Banach space of functions f measurable on Ω such that the norm

‖f‖L∞(Ω) = ess sup
x∈Ω

|f(x)| = inf
ω:measω=0

sup
x∈Ω\ω

|f(x)| < ∞.

By ‖f‖Lp(Ω), (1 ≤ p ≤ ∞) we denote the linear space of all functions f on Ω such that ‖f‖Lp(Ω) <

∞. Equipped with the norm ‖ · ‖Lp(Ω), Lp(Ω), becomes a Banach space. For p = 2, L2(Ω) is a
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Hilbert space with the inner product given by

〈f, g〉 =
∫

Ω
f(x)g(x)dx, f, g ∈ L2(Ω)

For an open nonempty set Ω ⊂ R
n we shall denote by:

Llocp (Ω) (1 ≤ p ≤ ∞)– the set of functions defined on Ω such that for each compact K ⊂ Ω,

f ∈ Lp(K),

C∞(Ω) =
⋂∞
ℓ Cℓ(Ω)– the space of infinitely continuously differentiable functions on Ω,

C∞
0 (Ω) – the space of functions in C∞(Ω) compactly supported,

W ℓ
p(Ω) (ℓ ∈ N, 1 ≤ p ≤ ∞)– Sobolev space, which is the Banach space of functions f ∈ Lp(Ω)

such that for all α ∈ N
n
0 where |α| = ℓ the weak derivatives Dα

wf exist on Ω and Dα
wf ∈ Lp(Ω)

with the norm

‖f‖W ℓ
p(Ω) = ‖f‖Lp(Ω) +

∑

|α|=ℓ

‖Dα
wf‖Lp(Ω)Lp(Ω),

wℓp(Ω) (ℓ ∈ N, 1 ≤ p ≤ ∞)– the semi–normed Sobolev space, which is the semi–Banach space of

functions f ∈ Lloc1 (Ω) such that for all α ∈ N
n
0 where |α| = ℓ the weak derivatives Dα

wf exist on

Ω and Dα
wf ∈ Lp(Ω) with the semi–norm

‖f‖wℓp(Ω) =
∑

|α|=ℓ

‖Dα
wf‖Lp(Ω).

Let k be a nonnegative integer and Ck(Rn) be the space of continuous functions in R
n having

continuous partial derivatives up to order k.

In Ck(Rn) the usual topology defined by the family of semi–norms:

|f ;Ck(Rn)| = max
|j|≤k

max
K

|Djf |,

where K ⊂ R
n are compact.

For k < α ≤ k + 1, Lip(α,Rn) the Lipschitz space of order α, corresponding to first difference,

is the space of functions f ∈ Ck(Rn) such that

|Djf(x)| ≤ M for |j| ≤ k and x ∈ R
n

and

|∆hDjf(x)| ≤ M |h|α−k for |j| = k and x, h ∈ R
n,

where ∆hg(x) = g(x+h)− g(x) and the norm ‖f ;Lip(α,Rn)‖ is the infimum of all possible con-

stants M in these inequalities. The space Λα(R
n) is the Lipschitz space of order α corresponding

to second differences.

Recall that LipM1 is the set of all continuous functions f such that

‖Df(x)‖∞ ≤ M for all x ∈ R.
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Hölder’s inequality: Suppose that 1
p + 1

q = 1, for 1 < p < ∞, q = ∞ for p = 1 and q = 1

for p = ∞. If f ∈ Lp(Ω) and g ∈ Lq(Ω) then fg ∈ L1(Ω) and ‖fg‖L1(Ω) ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω).

Minkowski’s inequality. If f, g ∈ Lp(Ω) then f + g ∈ Lp(Ω) and ‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp .
Minkowskis inequality for integrals. In addition, let A ⊂ R

n be a measurable set. Suppose that

f is measurable on A× Ω and f(, y) ∈ Lp(Ω) for almost all y ∈ A. Then

‖
∫

A
f(, y)dy‖Lp(Ω) ≤

∫

A
‖f(, y)dy‖Lp(Ω)dy,

if the right-hand side is finite. Similar inequalities hold for finite and infinite sums.

The Fourier transform of f ∈ L1(R
s) is defined as

f̂(θ) =

∫

Rs

f(t)exp(−iθ · t)dt

The Fourier transform can be uniquely extended to functions in L2(R
s). For µ > 0 we denote

by Hµ the space of all functions f ∈ L2(R
s) such that the semi–norm

|f |Hµ(Rs) :=

(∫

Rs

|f̂(ξ)|2|ξ|2µdξ
)1/2

is finite. For a nonempty open subset Ω of Rs, we define

Hµ(Ω) := {f |Ω : f ∈ Hµ(Rs)}.
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Chapter 1

Introduction

Nowadays surfaces in Computer Aided Geometric Design are often described with millions

of control parameters. Guskov et al. (2000) introduced normal multiresolution approxima-

tion of curves or surfaces. Subdivision scheme can be combined with this approximation

scheme to approximate arbitrary functions, curves and surfaces. A multiresolution ap-

proximation of a curve or surface is normal if all the wavelet vectors perfectly align with

a locally defined normal direction which only depends on the coarser levels. Note that by

the normal direction we mean a normal onto an approximation of the curve or surface.

Normal multiresolution approximation depends on the computation of a normal, as such

this approximation leads to nonlinear representation of wavelet coefficients. This scheme is

known as normal multiresolution approximation and the detail vectors in normal directions

are called normal wavelets.

The mathematical properties of these wavelets are well understood as the approximation

of functions of one or more variables with some regularity conditions imposed on the

functions f , such as the continuity of the function being interpolated. Daubechies et al.

(2004) investigated the mathematical properties of normal multiresolution approximation

of curves, such as convergence, regularity and stability of smooth curves and it is shown

numerically that normal meshes are stable. However, for the case of 1 D curves in the plane

or 2 D surfaces in 3 D spaces much less is known about their convergence and stabilities in

less smooth spaces, such as Besov spaces. These are the essential properties to be studied

1



in the context of surface compression.

Surface compression, which is in fact a trade off between maintaining accuracy and

reduction of the amount of data, is essential in these contexts. As this normal direction

depends on coarser level, only a single scaler coefficient need to be stored instead of 2 or

3–vectors. Typically one takes a parametrization of the original curve or surface and ends

up with wavelet analysis in each of the two or three components. This means the wavelet

coefficients now become 2 or 3–vectors. This is useful in compression of curves or surfaces.

A surface compression algorithm is given in DeVore et al. (1992b) by means of wavelet

decomposition of certain box splines, and error bounds are given in terms of the input

surfaces. However, multiresolution triangulation are widely used in computer graphics for

representing 3 D shapes. Also, it is useful to describe 2 D surfaces, gray–scale images

in some function classes, such as Horizon class images (Donoho, 1999) which comprise

constant regions separated by smooth discontinuities, where the line of discontinuity is

Hölder’s continuous. Normal multiresolution triangulation is an efficient triangulation to

the local adaptivity and to the discontinuities. Normal meshes automatically generate a

polyline (piecewise linear) approximation which gives us optimal rate of error decay in cer-

tain function classes unlike the blocky piecewise constant approximation of tensor product

wavelets. In this way, the proposed nonlinear multiscale normal mesh decomposition is

an anisotropic representation of the 2 D function. The same idea of anisotropic represen-

tations lies at the basis of decompositions, such as wedgelet and curvelet transforms but,

the proposed normal mesh approach has a unique construction.

The purpose of this research is to extend these ideas to the case of multiresolution

analysis over normal multiresolution triangle. The challenging task is to describe the

quasi–interpolating wavelet functions over the normal multiresolution triangles and effi-

cient representation (compressed) of gray–scale images with various smoothness properties.

2



1.1 Background and Motivation

For the scalar algorithm on a uniform grid, the interpolating process is equivalent to a

scheme proposed by Dubuc (1986) and later extended by Deslauriers and Dubuc (1989).

Dubuc defines a method of interpolation generated through a symmetric iterative process

on the refined dyadic grids. The Dubuc iterative process is an interpolation scheme, i.e., a

fill–in scheme, but not a multiresolution scheme. Donoho (1992) developed an interpolating

wavelet transform using Deslauriers and Dubuc interpolating function. This is a non–

orthogonal transform with formal resemblance to orthogonal wavelet transform (Cohen et

al., 1992, 1993a,b; Daubechies, 1988). It represents the objects by dilation and translation

of a basis function, but for which the coefficients are obtained from linear combination

of samples rather than integrals. This transform depends in a fundamental way on the

interpolation scheme of Deslauriers and Dubuc (1989). An important observation of this

transformation is that the resulting coefficients had the decay properties as the decay

properties of smooth orthogonal wavelet decomposition. It is essentially C2 smoothness

(Daubechies, 1992, Chap. 6) interpolating wavelet transform.

A quasi–interpolatory multiresolution algorithm of Guskov et al. (2000) is known as

normal multiresolution approximation. This scheme is similar to the lifting scheme pro-

posed by Sweldens (1996). The scalar version of the Harten’s (1993) (Abgrall and Harten,

1998; Harten, 1996) algorithm is closely related to the work of Donoho (1992) and Sweldens

(1997). The essential fact in this schemes is quasi–interpolating multiresolution algorithm.

1.1.1 Interpolating Wavelet Transforms

There are three well known types of constructions for interpolating wavelet transforms.

The first one is that interpolating spline wavelets. Let D be an odd positive integer,

and LD be the fundamental polynomial spline of degree D (Schoenberg, 1972), i.e., the

piecewise polynomial with knots at the integers k ∈ Z, continuity CD−1, and satisfying

the interpolation conditions. This function is a (D − 1, D) interpolating wavelet; it is

regular of order R = D − 1; its derivatives through order D − 1 decay exponentially with

distance from 0; it satisfies a two–scale relation; and it generates all polynomials of degree
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D through its translates.

The second family is that the Deslauriers–Dubuc Fundamental functions. Let D be

an odd positive integer. These are functions FD defined by interpolating the Kronecker

sequence at the integers on a function on the binary rationals by repeated application of

the following rule. If FD has already been defined at all binary rationals with denominator

2j, j ≥ 0, extend it by polynomial interpolation to all binary rationals with denominator

2j+1, i.e., all points halfway between previously defined points. Specifically, to define the

function at (k + 1/2)/2j when it is already defined at all k/2j , fit a polynomial Πj,k to

the data (k
′

/2j , FD(k
′

/2j)) for k
′ ∈ {(k − (D − 1)/2)/2j , · · · , (k + (D + 1)/2)/2j}– this

polynomial is unique–and set

FD((k + 1/2)/2j) ≡ Πj,k((k + 1/2)/2j).

It turns out that this scheme defines a function which is uniformly continuous at the

rationals and hence has a unique continuous extension to the reals. This extension defines

an (R,D) interpolating wavelet for an R = R(D).

The third family of wavelet is based on de la Vallée Poussin means (Capobianco and

Themistoclakis, 2005). The respective kernels have a particularly simple representation

and, in the case of Bernstein-Szegö weights, they satisfy a suitable interpolation property.

Thus, by restricting to the four types of Chebyshev weights, polynomial interpolating

scaling functions are defined by using the de la Vallée Poussin interpolation process, and

polynomial wavelets are explicitly given in terms of these scaling functions. Such wavelets

are not orthogonal, but they are uniquely determined by the following interpolation con-

straint: at each resolution level j, both scaling and wavelet functions are interpolating

polynomials, and their interpolation knots constitute two disjoint sets whose union gives

the interpolation knots of the scaling functions at the higher resolution level j + 1.

The above mentioned construction of wavelets are close resemblance to classical wavelet

theory. Specifically, the second family closely resemble with the Daubechies wavelet in

terms of the construction and in terms of the other concepts, such as smoothness properties

etc., but they (interpolating wavelets) are not orthogonal. Hence, the interpolating wavelet

FD is at least as smooth as the corresponding Daubechies wavelet, roughly twice as smooth.
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Although, there are some other construction of prewavelets by Buhmann (1994; 1995)

and by Blu and Unser (2002) using multiquadric functions based on the classical wavelet

theory. Both construction depend on the principle of localization of compactly supported

basis functions. Blu and Unser (2002) used fractional splines concept for localization of

one–side power function and also multiquadric function while Buhmann (1994) used the

2nd order divided difference equation of multiquadric functions on spaces generated by B–

splines. In both cases construction of wavelet basis functions are based on the spaces that

are generated by splines, i.e., the wavelet basis functions are basis for the spaces generated

by the splines.

1.1.2 Quasi–Interpolating Wavelet Transform

One of the particular interest of progressive reconstruction is multiresolution meshes, where

objects are described through hierarchy of increasingly detailed meshes. Each new mesh

level is computed from the previous one by first predicting a new point, for instance, by

subdivisions schemes, and then correcting the predicted point by a wavelet (or detail)

vector. Obviously, this can be generalized to data fitting problem. This problem could

be reduced into quasi–interpolating scheme, hence the name quasi–interpolating wavelet,

which is described as follows:

Let Ω be a bounded domain in R
d with minimal smoothness boundary ∂Ω, i.e., we

assume that Ω is a Lipschitz domain. By a Lipschitz domain, it means that a bounded

and connected open sets whose boundary may be locally described as the graph of a

Lipschitz function. The problem of data fitting is formulated in the following way. Given

a cloud of data on the boundary, non–coinciding points, denoted by P = {(xi, zi)}i=1,··· ,N ,

xi ∈ Ω, zi ∈ R, for all i = 1, · · · , N , and defined by the corresponding horizontal values

X = {xi}i=1,··· ,N , and vertical values Z = {zi}i=1,··· ,,N , one seeks a function f : Ω → R that

represents the information contained in P . In this approach, it is to construct a function

f of the form

f =
∑

λ∈Λ

dλψλ,

where {dλ}λ∈Λ are vertical off–set vector corresponding to the normal wavelets {ψλ}λ∈Λ
and Λ stands for an appropriate set of indices.
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With the above notion, let φ be a compactly supported function on Ω such that φ : Ω → R

and S(φ) be a linear space with generator φ, i.e., S(φ) is the linear space of multi–scaling

functions of φ. One of the important problem in this area is that construction of quasi–

interpolating formulas. It is well known that corresponding to a generator φ there are

infinitely many quasi–interpolating formulas. A characterization of these formulas, partic-

ularly those which depend only on finite discrete set of functions values at different scales

are important in the context of approximation. This can be considered as multiresolu-

tion. With the aid of this characterization, normal interpolating wavelet transform can be

addressed with the following assumptions.

Let (S) be a family of functions in S, for simplicity, assume that the function represented

by one–valued functions y = S(x), −1 ≤ x ≤ 1. Similar considerations may apply to

unisolvent families for multivariate case. The family (S) is assumed to be n–parametric,

solvent, unisolvent, and continuous; more explicitly it is assumed the following:

1. Solvence: for any n values {x1, · · · , xn} with −1 ≤ x1 < · · · < xn ≤ 1 and

arbitrary real numbers {y1, · · · , yn} there exists a function S of (S) with S(xi) = yi,

i = l, · · · , n;

2. Unisolvence: only one such function exists, in the extended sense that not only, for

any two different functions S0 and S1 of (S), S0 − S1 has less than n roots (zeros),

but also that this is true if any root x with |x| < 1 for which S0−S1 does not change

sign between x− ǫ and x+ ǫ is counted as two roots, where ǫ > 0;

3. Continuity: S(x) = S(x; y1, · · · , yn) is a continuous function of x, y1, · · · , yn.

Remark 1.1.1 Let a1, · · · , an+1 be the vertices of a non–degenerate n simplex of R
n.

If X = {a1, · · · , an+1} then, as it is well known, X is a 1–unisolvent set for Lagrange

interpolation.
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1.2 Problem Statement

Current research concentrates on the applicability of the normal offset concept on real

images. In practice, a good initial mesh seems to have crucial impact on the performance.

The same idea of normal mesh can be used to select a limited number of crucial coarsest

scale samples (pixels). In a normal offset decomposition, the multiscale detail coefficients

carry information on the location of the line singularities. The procedure is highly nonlin-

ear. Topological exceptions need to be dealt with carefully. This observation also explains

why nonlinear approximation, for compression, is a non-trivial task. Thresholding or tree

structured coefficient selection has to deal with the topological aspects.

A first attempt to use normal mesh techniques for image approximation was made by

Jansen et al. (2005). Gray–scale images are treated as two dimensional functions domi-

nated by geometric structures comparable with terrain models used in geographical infor-

mation systems. Authors used normal meshes to approximate piecewise continuous height

fields and observe that normal meshes have the capability to adaptively approximate the

jump in a way to wedgelets and curvelets. Moreover, authors proved that within certain

function class the normal mesh representation achieve an n–term approximation rate us-

ing a wavelet transform combined with a nonlinear thresholding σ2
L2
(n) = O(n−1). Since

approximation and compression are tightly related to each other, their results indicate

that the normal offset method should be considered for the development of efficient rate–

distortion image encoders of piecewise smooth images. Recently normal multiresolution

approximation of Geometric Image Approximation was investigated by Aerschot et al.

(2009). Further results are available in Aerschot (2009).

In practice of image processing, less smooth spaces, namely BV and the Besov space B1
1,1

(Cohen et al., 1999) are used to model gray–scale images. Recall that if Ω is a bounded

domain in R
d then, the Besov space B1

1,1(Ω) is taken in place of the (large) space BV (Ω).

Both BV (Ω) and B1
1,1(Ω) are smoothness spaces of order one in L1(Ω), e.g., the space

BV (Ω) is the same as Lip(1, L1(Ω)). In contrast to BV the B1
1,1(Ω) norm has a simple

equivalent expression as the ℓ1 norm of the coefficients in a wavelet basis decomposition

f =
∑

λ∈Λ dλψλ, where Λ denotes the set of indices for the wavelet basis.
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1.3 Aims and Objectives

The objective of this research is to investigate the normal multiresolution approximation

of a piecewise smooth function by a polynomial, or more generally by a linear combination

of basis functions. This research focus on how normal wavelets work for less smooth

spaces, particularly spaces that are used to model natural scene images. The optimal

algorithms for such applications can be derived from expansions into unconditional bases

for the function that models the object to be compressed. To my best of knowledge, so far

there has been no representation for normal wavelets that models a object in BV or Besov

spaces. Thus, it is essential to study the properties of the normal wavelet coefficients in

Bα
p,q(Ω), 1 ≤ p, q ≤ ∞, for 0 < α < 1, in order to device a better compression scheme for

gray–scale images.

The orthonormal wavelet bases yield unconditional bases for a large variety of function

spaces. Probably, the most prominent examples are the (homogeneous) Besov spaces

Bα
p,q(R), α ∈ R, 0 < p, q < ∞, which then characterized by decay properties of wavelet

coefficients (〈f, ψj,k〉)j,k∈Z.

To be more precise, define for α ∈ R, 0 < p, q <∞, the coefficient spaces bαp,q(R) as the

collection of all complex–valued sequences t = (tj,k)j,k∈Z, satisfying

‖t‖bαp,q(R) := (
∑

j∈Z

(
∑

k∈Z

(2−j(α+1/2−1/p)|tj,k|)p)q/p)1/q <∞. (1.1)

It is known that under conditions on the wavelets localization, vanishing moments and

smoothness properties, f is in Besov spaces Bα
p,q(R) if and only if (〈f, ψj,k〉)j,k∈Z is in the

corresponding coefficient spaces bαp,q(R); see e.g., Frazier et al. (1991),

‖θ‖bαp,q(R) := (
∑

j∈Z

(
∑

k∈Z

(2−j(α+1/2−1/p)|θj,k|)p)q/p)1/q <∞. (1.2)

The above discussion of the continuous setting suggests, using the space of coefficient fam-

ilies bαp,q(R) of non–orthogonal wavelet decomposition, see e.g., Feichtinger and Gröchenig

(1992), into normal wavelet decomposition.
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1.4 The Scope of this thesis

The scope is two folded :

1. constructing basis functions for Normal Interpolating Wavelet transform and

2. characterizing normal wavelet coefficients in bαp,q for 1 ≤ p, q ≤ ∞ and 0 < α < 1.

The first objective of this research is the construction of quasi–interpolating wavelets on

space spanned by univariate multiquadric functions on regularly spaced knot sequences,

then generalize to multivariate setting with suitable assumptions. This is similar to lin-

ear splines on manifolds. Construction of such basis function is based on principle of

interpolation of multiquadric functions. Underlying concept is that normal wavelets are

quasi–interpolant which uses the concept as multiquadric at a different resolution level,

e.g., multiquadric functions at a different resolution level. A convenient setting of mul-

tiresolution analysis is usually based on some sequence of nested closed subspaces of some

function spaces, S(φ) in Banach spaces such that S0 ⊂ S1 ⊂ · · · ⊂ Sn ⊂ S(φ), satisfied

with the basis function. The best approximation is said to be furnished by that func-

tion for which the maximum distance between corresponding points of the approximating

and the approximated function is as small as possible. Much of this effort hinges on the

idea of multiresolution analysis as a device to construct wavelet approximation likewise

traditional wavelet transform.

The method of Radial Basis Functions provides good approximating properties (Wu and

Schaback, 1993), a rich theoretical characterization (Buhmann, 2000; Powell, 1992) and

a mesh free approach which appears quite natural when working with unorganized data.

However, the data reduction strategies (like thinning (Floater and Iske, 1996a) or adaptive

thinning (Dyn et al., 2002)) that are necessary to construct a multiscale formulation of the

problem, as in (Floater and Iske, 1996b), or simply to make it tractable usually enforce the

construction of some auxiliary triangulation. The error of a normal mesh approximation

in 2 D is completely dominated by the error of this piecewise linear approximation of the

geometry information in the edge. This observation suggests that curved triangles have the

potential of catching the geometry information even better. It is shown that the objective
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is directly related with auxiliary triangulation with multiquadric functions.

With regard to the second objective, it is shown that the above decomposition is uncon-

ditional basis for the function space that models the object. Which spaces of functions

other than Lp(R) should we consider? It is supposed to deduce smoothness properties

of a function from its normal wavelet coefficients. This is similar to measure smoothness

properties of a function from its samples. Thus, it is meaningful to consider smoothness

properties such as size, growth and oscillation. We are then led to look at Besov–type

spaces of functions in Ω ⊂ R
d.

1.5 Contribution

In Chapter 3 it is shown that the Normal Multiresolution Triangulation (NMT) Interpo-

lation could be interpolated with multiquadric functions under some certain restrictions.

Moreover, it is shown in Chapter 7 that this interpolation scheme could be used in image

compression scheme effectively. In practice, digital images are samples on square grids,

hence that, using normal multiresolution approximation using triangular meshes requires

remeshing operation. Then there should be a remeshing operation to display the image

encoded with normal mesh. Such remeshing is not needed in Normal Multiresolution

Interpolation to display the image.

In Chapter 4 non–orthogonal wavelet expansions associated with a class of mother

wavelets on real line R is considered. This class of wavelets comprises mother wavelets

that are not necessarily integrable over the whole real line. The coefficients are determined

by quasi–interpolation formula rather than sampling. The pointwise convergence of these

wavelet expansions (Zayed, 2000) is investigated.

In Chapter 5 the above non–orthogonal wavelet is constructed in a bounded domain

Ω ⊂ R
d, d ≥ 1, with uniform cone condition. An important achievement is that curved

triangles are used as basis function in higher dimension. Moreover, Lp stability of the above

decomposition is proved with the concept of admissible triangulation sequence property.

This scheme does not require tenser product of wavelets on real line. This is an natural
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extension of wavelet on real line.

Remarkably, admissible function sequence is introduced in the Chapter 5. This leads

to characterization of smooth function on a non–smooth discrete objects. This has been

developed in Chapter 6 by atomic decomposition of functions spaces (Frazier and Jaw-

erth, 1985, 1990; Frazier et al., 1991) with normal interpolating wavelets. The nonlinear

character of normal multiresolution approximation itself makes it harder to analyze the

effect of nonlinear approximation of images, but with the decomposition into function

spaces it is possible analyze the effect of nonlinear approximation. Moreover, nonlinear

approximation (DeVore, 1998; DeVore and Popov, 1988) makes it possible to thresholding

or tree structured coefficients selection. Topological considerations is not necessary as in

the NMT approximation (Lounsbery et al., 1997).

1.6 Structure of this Dissertation

The organization of this dissertation is as follows. There now follows a chapter with

preliminaries, where normal multiresolution approximation algorithm and essentially some

preliminaries needed in later chapters are described. In Chapter 3, a basis function using

Hardy’s multiquadric function is introduced for normal multiresolution approximation.

Chapter 4 present the normal interpolating wavelet transform on real line using quasi–

interpolating wavelet. Based on the above univariate interpolating basis function, the

transformation is generalized to multivariate setting in Chapter 5 and, Chapter 6 is devoted

to the decomposition of function into normal wavelet with the assumed smooth properties

in to Besov spaces. In Chapter 7, an specific application such as image compression is

discussed. Finally Chapter 8 is devoted to discussions on diverse issues concerning with

the normal wavelet interpolation.
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Chapter 2

Background

2.1 Multiresolution

The idea of a multiresolution analysis is a hierarchy of averages and the study of their

difference, devised by the algorithm of image analysis and reconstruction, by Laplacian

Pyramid scheme of Burt and Adelson, (1983). The Lagrangian interpolation function is

the basis of Mallat (1989) ideas to view orthonormal wavelet bases as the tool for multires-

olution analysis. Following this development, several authors carried out detailed analysis

in construction of wavelets and the properties of multiresolution analysis. Essentially

wavelets are building blocks to represent data and functions in different resolutions. In

this context, the recent development of wavelet theory has been given giant leap towards

local scale decompositions.

A multiresolution approximation is the decomposition of a function, e.g., f(x), into

scales. A discrete multiresolution analysis is a decomposition of a vector array (fj)j∈Z

representing point value discretization of f(x) on increasing sequence of partitions say

{xj}j∈Z on a set ∂Ω, where ∂Ω is the boundary of a bounded domain Ω ⊂ R
d. A discrete

multiresolution algorithm consists of a decomposition (analysis) which generates the scale

coefficients from the input array and reconstruction (synthesis) which recovers the input

array from the scale coefficients.
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2.1.1 Wavelet

A convenient setting of multiresolution analysis is the wavelet. Traditionally wavelets are

square integrable functions ψj,k defined as translates and dilates of one particular function,

the mother wavelet ψ. These functions form orthonormal basis of some subspaces Vj,

j ∈ Z, of L2(R).

Wavelets are versatile tool for representing general functions and data sets, and they

enjoy widespread use in areas as diverse as signal processing, image compression, speech

synthesis, finite element methods, and statistical analysis (among many others). The par-

ticular appeal of wavelets derives from their representational and computational efficiency:

most data sets exhibit correlation both in space and frequency as well as other type of

structures, such as geometric properties of an object. These can be modeled with high

accuracy through sparse representation of wavelet coefficients. Wavelet representation can

also computed fast because they are built on multiresolution property. The mathemati-

cal properties of wavelets are well understood in view of functional setting, i.e., for the

approximation of function of one or more variables.

Surfaces in Computer–Aided Geometric Design representation of 3 D objects, e.g., hu-

man face recognition, are modeled with millions of control points. These points can for

instance arise from Laser Scanners. Hence, the representation of 3 D geometric objects

that allow for efficient computational processing have become an increasingly important

problem. It is possible to sample real world 3 D objects with a very high level of details;

scanners can generate huge amount of data typically in the form of triangular meshes with

complex topology. The irregular format makes processing like compression, denoising, fil-

tering and texturing, difficult. New ways of describing 3 D objects can lead to significantly

improved compressing algorithms. In addition, it is often desirable to support progressive

reconstruction: a coarse version of the object is first quickly reconstructed and additional

levels of detail are added as the reconstruction continues. This is useful in streaming appli-

cation in networked environments. Only the wavelet vectors needed are stored depending

on the smoothness of the surface or curve and because most of the wavelet vectors are

small, which leads to compression.
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Reference to Daubechies et al. (1999), for progressive reconstruction, multiscale recon-

struction is of particular interest, where the objects were described through an hierarchy

of increasing wavelet coefficients. Wavelets at level j are typically used, in the regular

case, as the building blocks to represent any function in the multiresolution analysis that

lies in the j +1–th approximation space Vj+1, but not in the coarser approximation space

Vj ⊂ Vj+1. One can introduce the same concept in irregular setting as well. The scaling

functions ϕj,k’s are limit functions obtained from starting the subdivision at level j, from

the initial data fj,l = δl,k, and refining from there on. Under appropriate assumption on

the subdivision operators Sj, the ϕj,k’s are independent; Vj is the function space spanned

by them. Clearly Vj ⊂ Vj+1. As in the irregular case, there are many different reasonable

choices for complement spaces Wj (which will be spanned by the wavelets at level j) that

satisfy Vj+1 = Vj ⊕Wj. When the scaling functions are interpolating as in Lagrangian

case, i.e., ϕj,k(xj,k′ ) = δk,k′ , then the simple choice for wavelet is given by ψj,m = ϕj+1,2m+1,

i.e., the wavelet is simply a finer scale scaling function at an odd location. This is called

as an interpolating wavelet. This has been modified in the following manner.

Hypothesis: This structure is quite similar to a wavelet multiresolution analysis with

S(φ) playing the role of the set of wavelet scaling functions. It lacks the explicit orthogo-

nal (or bi–orthogonal) structure of wavelets but has much more flexibility. The main idea

behind this concept is: Locally supported wavelets are obtained by relaxing the

condition that the wavelets should lie in the orthogonal complement spaces.

This is immediately related to the techniques such as lifting scheme (Sweldens, 1997) and

normal multiresolution wavelets (Daubechies et al., 2004). Moreover, the wavelet trans-

form is non–orthogonal projection onto the nested sub–spaces and satisfies the property

Qp = p, where p is the polynomial of order less than or equal to d and d is odd.

Each level of reconstruction is computed with scaling functions and wavelet coefficients.

The scaling functions are triangular functions represent normal multiresolution wavelets.

Normal multiresolution wavelets are quasi–interpolating basis functions. The basis func-

tion is a piecewise liner function which satisfying Lagrangian interpolating condition, and

it would be shown as a multiquadric function. Clearly, multiquadric function is a shift–

invariant. The quasi–interpolating basis function φ is constructed by some suitable linear

combination of multiquadric function ϕ, which spans the subspaces Vj , j = 0, 1, · · · ,
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of some Banach spaces B. These subspaces satisfying the nested property such that

Vj ⊂ Vj+1. Hence, by way of construction the quasi–interpolating function which span

the same spaces Vj, i.e., generating function. By the above concept θj,k = φj+1,2k+1, i.e.,

the wavelet is simply a finer scale scaling function at an odd location φj,k(xj,k′ ) = δk,k′ .

Thus, we have a quasi–interpolating wavelet.

2.2 Related Work

Many first generation wavelet families have been constructed over the last ten years. Ex-

cept for Donoho (1992), they all rely on the Fourier transform as a basic construction tool.

The reason is that translation and dilation become algebraic operations in the Fourier do-

main. In fact, in the early 1980s, several years before the above developments, Strömberg

(1981) discovered the first orthogonal wavelets, with a technique based on spline interpo-

lation which does not rely on the Fourier transform.

Wavelets form a versatile tool for representing general functions or data sets. Essentially

we can think of them as data building blocks. Their fundamental property is that they

allow for representations which are efficient and which can be computed fast. Quoted from

Donoho (1993a), wavelets are optimal bases for compressing, estimating, and recovering

functions in different function spaces F . Roughly speaking, for a general class of functions,

the essential information contained in a function is captured by a small fraction of the

wavelet coefficients. Wavelets are based in sub–division scheme and traditionally wavelets

are functions of φi,j defined as the translates and dilates of one or more particular function,

the mother wavelet φ. This is known as first generation wavelets.

As it is mentioned earlier the sub–division scheme determine the wavelets coefficients

and these wavelets are represented in regular spaced points. Hence, it does not reap

good results in general settings such as with real data. Moreover, wavelets need not to be

translates and dilates of one or more templates. Generalization of this type is called second

generation wavelets (Sweldens, 1997). In this research it is concerned with a more general

setting but, still enjoy all the powerful properties of first generation wavelets. Several

results concerning to the construction of wavelets are adapted to some of these cases in
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second generation already exist. For example, wavelets on an interval (Chui and Quak,

1992; Cohen et al., 1993a,b), wavelets on bounded domains (Cohen et al., 2000), spline

wavelets for irregular samples (Dahmen and Micchelli, 1993) and weighted wavelets. These

constructions are tailored toward one specific setting. Other instances of second generation

wavelets have been reported in the literatures, e.g., the construction of scaling functions

through subdivision (Dahmen, 1991), basis constructions (Dahmen et al., 1994a), as well

as the development of stability criteria (Dahmen, 1991, 1994b).

Normal Multiresolution Approximation: Multiresolution approximation of a curve

or surface is normal if all the wavelet vectors perfectly align with a locally defined normal

direction which depends on the coarser levels. Given that this normal direction only

depends on coarser levels, only a single scalar coefficient needs to be stored instead of

the standard 2–or 3 vectors. Clearly this is extremely useful for compression applications

(Khodakovsky et al., 2000). An algorithm in Guskov et al. (2000) gives to build normal

mesh approximation of large complex scanned geometry. All these methods really refer to

isoscale triangulation of a function in a bounded domain Ω ⊂ R
d, d ≥ 1, and data sets are

on its minimal smooth boundary ∂Ω.

Triangulation: Triangulations consist of triangles, that is, triple of vertices connected

by edges of the triangle. These triangles have potential to represent arbitrary edges and

contours. More accurately, with a fewer number of patches than a fixed square repre-

sentation. For efficient processing of 3 D mesh data, multiscale triangulations based on

nonlinear subdivision has been proposed in computer graphics. Multiresolution triangu-

lations meshes are widely used in computer graphics for representing 3 D shapes and 2 D

piecewise smooth functions such as gray scale images, because triangles have potential to

be more efficient approximation at the discontinuities between the smooth pieces than the

other standard tools like wavelets.

In multiresolution meshes, objects are described through hierarchy of increasingly de-

tailed meshes. Each new mesh level is computed from the previous one by first predicting

a new point. The prediction is done by a subdivision scheme, such as Butterfly (Loop,

1987, 1994), the predicted point would be corrected by wavelet (detail) vector, i.e., these

wavelets need to be stored. In general setting one should be able to characterize these
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wavelets (second generation) in various functional spaces of interest. The following section

presents an overview of subdivision scheme based on Daubechies et al. (2004) and Runborg

(2005).

2.3 Normal Multiresolution Approximation

Guskov et al. (2000) describe the idea of normal multiresolution approximation based

on the midpoint subdivision scheme. Subdivision schemes produce millions of control

parameters for representing such curves and surfaces. These control parameters can be

reduced by combining with wavelets. For an optimal representation of curves and surfaces,

normal mesh subdivision scheme is represented as a multiresolution triangulation over the

different level of resolutions. The normal difference between the two subsequent level of

resolutions is called as normal wavelet coefficient. The original curve Γ is described by

successively finer approximations which are organized in different multiresolution layers

indexed by j, see Figure 2.1. It is assumed that the Γ is a continuous and non intersecting

curve in the plane, whose endpoints are to be the 0th level multiresolution points v0,0 and

v0,1. To construct the vertices at level (j+1), we first set vj+1,2k = vj,k; this is what makes

the construction interpolating. Also compute new points vj+1,2k+1 ; each vj+1,2k+1 lies in

between the two old points vj,k and vj,k+1 . This is done by first computing a predicted or

Figure 2.1: Normal mesh algorithm using the mean value of adjacent points as predictor.
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base point as the mean value of the old points, v∗j+1,2k+1 = (vj,k + vj,k+1)/2. Next draw a

line from v∗j+1,2k+1 in the direction orthogonal to the line segment (vj,k, vj,k+1). This line

is guaranteed to cross the curve segment between vj,k and vj,k+1 at least once and we call

one of these points vj+1,2k+1 .

As this procedure continues, the normal polyline Γj , i.e. the piecewise linear curve

connecting the points vj,k comes closer and closer to Γ. Now think of this as a wavelet

transformation similar to the notion of lifting (Sweldens, 1997). Think of v∗j+1,2k+1 as a

prediction of the real point vj+1,2k+1 computed based only on coarser information. Then,

wj,k = ‖vj+1,2k+1−v∗j+1,2k+1‖ is a wavelet vector. Given that this vector points in a direction

normal to a segment that again only depends on coarser data. We only need to store the

length and one sign bit for this normal component to characterize it completely. Thus, we

have a polyline with no parameter information. One can also consider normal polylines

with respect to fancier predictors. For example, one could compute a base point and

normal estimate using the well known 4 point rule. Essentially, any predictor which only

depends on the coarser level is allowed. Hence, a normal polyline is completely determined

by a scalar component per vertex.

Normal polylines are closely related to certain well known fractal curves such as the

Koch Snowflake, see Figure 2.2. Here each time a line segment is divided into three sub-

segments. The left and right get a normal coefficient of zero while the middle receives a

normal coefficient, as such the resulting triangle is isoscale. Hence, the polylines leading

to snowflake with respect to the midpoint subdivision. There is also a close connection

with wavelets. The normal wavelet coefficients can be seen as a piecewise linear wavelet

Figure 2.2: Koch Snowflake
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transform of the original curve. Because, the tangential components are always zero, there

are half as many wavelet coefficients as the original scalar coefficients. Thus, one saves

50% memory right away. In addition to that, the wavelets have their usual decorrelation

properties. In the functional case, the above transform corresponds to an uplifted inter-

polating piecewise linear wavelet transform as introduced by Donoho (1992). There, it is

shown that interpolating wavelets with no primal, but many dual moments are well suited

for smooth functions. Unlike in the function setting, not all wavelets from the same level

j have the same physical scale. Here the scale of each coefficient is essentially the length

of the base of its triangle.

The above method can be generalized with more general methods, such as Lagrangian

subdivision scheme, which will lead to higher quality approximation for smooth curves.

An important observation is that the above scheme interpolates a continuous function

f : R → C at a set of control points Xi = {xi1 , xi2 , · · · , xin} in Ω ⊆ R at different

resolution levels.

2.4 Generalized Subdivision Scheme

Generalization of wavelet construction to the non–traditional settings, such as lifting and

normal multiresolution scheme, used the generalized subdivision schemes. Subdivision

schemes provide fast algorithms, create natural multiresolution structures and yield un-

derlying scaling functions and wavelets. Subdivision techniques are generally used to build

smooth functions starting from coarse description to finer. The main idea behind the sub-

division scheme is the iteration of up–sampling and local averaging to build functions.

Subdivisions schemes are studied in computer aided geometric design to intricate geomet-

rical shapes, in the context of corner cutting, construction of piecewise polynomial curves

and algorithms of iterative spline generators. Later splines were studied in spline functions

and wavelets.
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2.4.1 Sequences

Let X denote the space of infinite sequences. Sequences will be written in bold face, and

elements of sequences in normal font, x := (xk)k or simply (xk)k. Define the difference

operator ∆ as

(∆x)k = xk+1 − xk. (2.1)

Often a sequence itself is indexed by the subdivision level j; then use the convention that

x := (xj,k). Think of a sequence at level j as associated with the parameters tj,k = k2−j.

Therefore, also define the divided difference operator Dj = 2j∆. The divided differences

of a sequence xj are

x
[p]
j = Dp

jx, p > 0.

Use the usual sup–norm on X, |x|∞ = supk |xk|. Scalar functions can be applied to

sequences component wise, so that (F (x))k = F (xk). Use the special sequence k = (k),

i.e., the sequence of the k–th entry is k itself. The sequence with all entries equal to 0 is

0, similarly the sequence with all entries equal to 1 is 1.

2.4.2 Local Stationary Subdivision

A local stationary subdivision scheme is characterized by a bounded linear operator S

from X to itself, defined by a finite sequence s as follows:

(Sx)k =
∑

l

sk−2lxl. (2.2)

The width B of S is defined by B = [[(k − B)/2, [(k + B)/2]]. Given S, we can apply it

iteratively starting from a sequence a0 and define for all j ≥ 0,

aj+1 = Saj.

The sequence a0 can be viewed as a coarse approximation of a function on the integer grid;

the sequence aj then gives successively finer approximation of the function on grids with

spacing 2−j. A subdivision is interpolating if s2l = δl,0, implying aj+1,2k = aj,k for all j, k;

in this case aj,k interpreted as function values of f , aj,k = f(tj,k) = f(2−jk).
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The order of a subdivision scheme S is the largest degree for which it leaves the corre-

sponding space of monotonic polynomial invariant. More precisely, S is of order P , if P

is largest integer such that for all p–degree monotonic polynomials P with 0 ≤ p ≤ P , a

p–degree monotonic polynomial Q exists so that SP (k) = Q(k/2). If S is interpolating,

then SP (k) = P (k/2). Always assume that P is at least one so that, S1 = 1. The derived

subdivision schemes are defined as

S0 = S, S[p] = 2∆S[p−1]∆−1, p > 0.

Note that S[p] is well defined as long as S[p−1] has at least order one, and that the order

S[p] is one less than the order of S[p−1]. Thus S[p] is defined for p ≤ P . Also note that

S[p]Dj = Dj+1S
[p−1] and S[p]Dp

j = Dp
j+1S.

The special example is the midpoint interpolating subdivision scheme S = S2. This

scheme has the order P = 2 and yields piecewise linear limit functions.

2.4.3 Technical Preliminaries

Let C0(I) be the continuous and bounded functions defined on a (possibly unbounded)

interval I ⊆ R. Moreover, for a positive integer p, let Cp(I) be constituted by the functions

in C0(I) with a pth–derivative that is continuous and bounded on I. The notation for

fractional regularity is as follows. For f ∈ C0(I), let

Ω(r, f) = sup
t0,t1∈I

|f(t0)− f(t1)|
|t0 − t1|r

.

For p ∈ N and 0 < r < 1 define the class Cp+r(I) as the set of functions f ∈ Cp(I) for

which Ω(r, f p) is bounded. Similarly, use the notation f ∈ Lipα(I), with α = p+r, p ∈ R,

0 < r ≤ 1, when f ∈ Cp(I) and Ω(r, f p) is bounded. For α /∈ N, the spaces Lipα(I) and

C0(I) coincide; for α ∈ N, however, Cα(I) * Lipα(I). Finally, Cα−

(I) or Lipα
−

(I) stands

for
⋂

α
′
<α

Cα
′

(I) =
⋂

α
′
<α

Lipα
′

(I).

We shall use the notation α− in more general contexts as well. More precisely, if r is a

real number, we shall use the notation r
′

wherever we could insert in its place r − ǫ with
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ǫ > 0 arbitrarily small. With some abuse of notation we adopt the conventions r− < r
′

if

r < r
′

and r < r
′− if r < r

′

. It follows that min(r−, r
′

) equals r
′

if r > r
′

and r− if r < r
′

.

Taylor’s theorem says that if f ∈ Lipα(I) and p ∈ N, 0 < r ≤ 1 we can write

f(x) =

p∑

k=0

fk(x0)

k!
(x− x0)

k +R(x),

where the remainder term R(x) is bounded by

|R(x)| ≤ Ω(r, f p)

p!
|x− x0|p+r, ∀x, x0 ∈ I.

The following theorem concerns (Daubechies et al., 2004) the sequences xj that are not

formed exactly by subdivision, but that are close in the sense that the difference between

xj and Sxj−1 goes to zero exponentially.

Theorem 2.4.1 Let S be a subdivision scheme of order P ≥ 1 and S[p] its pth derived

scheme, with p ≤ P . Assume there are positive real numbers C, µ such that

|S[p]j |∞ ≤ C2µj, ∀j ≥ 0.

Let {xj} be a family of sequences satisfying

|xj+1 − Sxj|∞ ≤ C2−νj, j ≥ 0,

for some real number ν and let ϕj(t) be a piecewise linear function interpolating the points

(xj,k) at t = k2−j for all j, k. Set

P + κ := min(p− µ, ν), P ∈ N, 0 < κ ≤ 1.

If P ≥ 0 and |x0|∞ <∞, then there exists a function ϕ ∈ C(P+κ)−(R) such that ϕj(t) → ϕ

uniformly exponentially.

This theorem says that the regularity of the limit function of a family of sequences ap-

proximately generated by subdivision is bounded both by the regularity of the subdivision

scheme and the speed of the approximation.

Note that this is similar to standard results linking smoothness of functions with the

decay of their wavelet coefficients, where the wavelet coefficients at level j correspond
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to the difference between xj+1 and Sxj ; in the wavelet case, the subdivision operator

S is determined by the low–pass filter corresponding to the wavelet basis. Next we go

into more detail on the construction of a normal multiresolution for a smooth curve Γ in

the plane. Even though the normal multiresolution algorithm does not depend on any

parametrization, to formulate the theorem it is convenient to parametrize Γ by one of the

x– or y–coordinates. A piecewise C1 curve can always be broken up into adjacent finite

length pieces, possibly overlapping, that can be well parametrized by the x–coordinate

or by the y–coordinate; by restricting ourselves to these different pieces separately, and

interchanging the names of the two coordinates, we may thus assume that the curve Γ is

parametrized by its x–coordinate, so that

Γ = {(x, γ(x)); x ∈ I},

where γ is a smooth function and I is a bounded interval. The above theorems are then

applied to each of these pieces individually and yielding results valid for the whole curve.

There is a complication when the number of pieces is infinite, since the assumptions in

the theorem might not hold uniformly, and this case is not considered. In general, assume

that γ is at least C1(I), but occasionally consider the more general case where γ is Hölder

Figure 2.3: Notation for the normal scheme.
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continuous with exponent β, where 0 < β ≤ 1.

Having reduced Γ (at least locally) to the graph of a function γ(x), we can rephrase the

basic step in the construction of a normal multiresolution given in Figure 2.3. Start with a

sequence xj on level j and define yj = γ(xj). Next, use an interpolating subdivision scheme

S to compute the sequences x∗j+1 = Sxj and y
∗
j+1 = Syj. In general, y∗j+1 is not equal to

γ(x∗j+1), but we will see they are close. Next draw the line through (x∗j+1,2k+1, y
∗
j+1,2k+1)

that is perpendicular to the line connecting (xj,k, yj,k) and (xj,k+1, yj,k+1). This line and

the piece of Γ, between (xj,k, yj,k) and (xj,k+1, yj,k+1) have to intersect at least at one

point. We choose one of the intersection points to be the new point (xj+1,2k+1, yj+1,2k+1 =

γ(xj+1,2k+1)) (assume that there is a rule established which uniquely picks out one of the

solutions; pick the solution closest to the predicted point). Given that yj is always γ(xj),

we focus our attention on the convergence of the xj sequences. We will call a family of

sequences {xj} defined by the above procedure, a family of sequences generated by the

(S, γ) normal scheme.

To have a proper parametrization, we need that all xj sequences are increasing, i.e.,∆xj >

0. In general, there are very few subdivision schemes that always preserve increasing

sequences. In this case, the xj are obtained by a nonlinear perturbation of subdivision

so the situation is even more complex. Fortunately, there are conditions on both the

subdivision scheme and the initial sequence that guarantee that the xj will be increasing.

The following theorem introduces a non uniformity measure N of a sequence which is

the maximal ratio of the length of two neighboring intervals; it states that if the non

uniformity of the initial sequence is bounded and the subdivision scheme preserves this

bound, the sequences xj generated by the normal scheme will be increasing and converge

exponentially.

Theorem 2.4.2 Let S be an interpolating subdivision scheme. Let the non uniformity

N(x) be defined by

N(x) := sup
k

max

(
|(∆x)k|
|(∆x)k+1|

,
|(∆x)k+1|
|(∆x)k|

)
. (2.3)

Suppose there is an ρ such that for every strictly increasing x with N(x) ≤ ρ, Sx is strictly

increasing as well, and satisfies N(Sx) ≤ N(x). Suppose x0 is strictly increasing, with

sufficiently small |∆x0|∞ and N(x0) < ρ. If γ ∈ C2(R), then xj is strictly increasing for
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all j , with N(xj) ≤ ρ for all j , and the xj converge exponentially, i.e., there is a δ < 1,

so that,

|∆xj|∞ ≤ δj|∆x0|∞, for all j ≥ 0.

If S is the midpoint interpolating scheme, for which (Sxj)2k+1 = (xj,k+xj,k+1)/2, the same

conclusions follow if γ is merely Lipschitz continuous, without the smallness assumptions

on |∆x0|∞ and N(x0).

Examples of subdivision schemes that meet the requirements in the theorem are, for in-

stance, the first Lagrange interpolation schemes.

One of the important features of a normal multiresolution is the decay of the offsets in

each of the normal directions. We will refer to these as wavelet coefficients ωj,k which are

defined as

ωj,k =
√
(xj+1,2k+1 − x∗j+1,2k+1)

2 + (yj+1,2k+1 − y∗j+1,2k+1)
2.

The rate of convergence to 0 of the wavelet coefficients is then determined by the order of

P and the regularity of S, and the smoothness of Γ.

Theorem 2.4.3 Let S be an interpolating subdivision scheme of order P ≥ 1 and S[p] its

pth–derived scheme, with p ≤ P . Assume there are positive real numbers C, µ such that

|S[p]j |∞ ≤ C2µj , ∀j ≥ 0, µ ≤ p− 1.

Let {xj} be a family of increasing sequences generated by the (S, γ) normal scheme for

which there is a δ < 1 such that

|∆xj|∞ ≤ Cδj.

Let xj(t) be a piecewise linear function interpolating the points xj,k at t = k2−j ∈ [0, 1].

If γ ∈ Cβ(R) with β ≥ 2 then xj(t) converges uniformly exponentially to x(t) and x ∈
CQ−([0, 1]), where Q := min(p− µ, β). In addition, let Q

′

:= min(p− µ+ 1, β, P ). Then,

for all ǫ > 0 there is a constant Cǫ for which the wavelet coefficients,

ωj,k =
√
(xj+1,2k+1 − (Sx)∗2k+1)

2 + (yj+1,2k+1 − (Sγ(xj))2k+1)2,

satisfy

|wj|∞ ≤ Cǫ2
−j(Q

′
−ǫ).
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Finally, if Q > 1, let Q
′′

= min(Q − 1, 1). Then for sufficiently large j and arbitrary

ǫ > 0, there is a constant Cǫ such that

N(xj)− 1 ≤ Cǫ2
−j(Q

′
−ǫ),

with N(xj) defined as in (2.3).

Above theorems are obtained from Daubechies et al. (2004) in order to derive the following

Remark 2.4.1.

Remark 2.4.1 Suppose S = S2, β > 0 and x0 is strictly increasing. Then, xj is strictly

increasing for all j ≥ 0. If γ ∈ Cβ(R) with 0 < β < 1 then there is a C such that

‖∆xj‖∞ ≤ C

1 + j
β

1−β

, ∀j ≥ 0. (2.4)

If γ ∈ Lip1(R) then there is a δ < 1 such that

‖∆xj‖∞ ≤ δj|∆x0|∞, ∀j ≥ 0. (2.5)

In both cases there is a constant c such that

‖ωj,k‖∞ ≤ c2−jβ, (2.6)

for sufficiently large j ≥ j0, i.e., wavelet coefficients are depend on the regularity of the

interpolating function γj(t) → γ(t) as j → ∞. Thus, we have the sequence of

interpolating functions γj(t) as j → ∞.

2.5 Summary

Finally, before concluding this chapter, remark that there is a interpolating function for

normal subdivision scheme which uniformly converges to the function f being interpolated.

The order of convergence is depend on the smoothness of the function f which is O(2−jβ),

where 0 < β ≤ 1 is the smoothness of the function f , i.e., f satisfy the property of

Lipschitz condition. Throughout this dissertation it is assumed that the the function f

satisfy the property of Lipschitz condition except it is explicitly stated therein. It is clear

from the above the function be approximated by differencing with fractal nature.
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It is shown that the Lagrange interpolation schemes meets the normal subdivision

scheme. In the next chapter, an interpolating basis function based on the Lagrangian

is developed. The basis function is Hardy’s multiquadric function since it admits the

Lagrangian interpolation polynomials.
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Chapter 3

Normal Multiresolution Interpolation

3.1 Interpolation Methods

A standard problem in many applications requires one to find a reconstruction of a function

f from a collection of samples f(xn). In most applications the assumption of f is band–

limited, or equivalently that f is an entire function of exponential type, is well justified, and

frequently the sampling points are non–uniformly spaced or distributed quite randomly.

Then the mathematical problem is to find conditions under which f can be reconstructed

completely from its samples f(xn).

In particular, from the previous chapter we know that normal multiresolution approx-

imation is an quasi–interpolating approximation on multiresolution. Thus, the normal

multiresolution approximation has Interpolating Basis Functions for each and every res-

olution. Hence, our immediate objective is to find interpolating basis functions for each

resolution level in a principal shift–invariant spaces which are nested. This has been gen-

eralized as multivariate data interpolation problems; we are usually given data (xj, fj),

j = 1, · · · , N with distinct xj ∈ R
s and fj ∈ R, and we want to find a (continuous)

function Pf : R
s → R such that

Pf (xj) = fj, j = 1, · · · , N. (3.1)

For classical interpolation methods we assume Pf to be a linear combination of a set of
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basis functions φj, i.e.,

Pf (x) =
N∑

j=1

cjφj(x). (3.2)

The coefficients cj are determined by satisfying the constraint (3.1). To guarantee the

existence of a unique set of cj for arbitrary distinct xj , it is known that, when s > 1 and

N > 1, φj must be xj–dependent. In literatures, the φ ’s are frequently chosen to be basis

functions generated by shifts of a single strictly positive definite basic function φ, i.e.,

φj(x) = φ(x− xj). (3.3)

Correspondingly, (3.2) is now rewritten as

Pf (x) =
N∑

j=1

cjφ(x− xj). (3.4)

To express the problem in matrix–vector form, we let X = {x1, · · · , xn} be set of pairwise

distinct centers and let

c = [c1, · · · , cN ]T , f = [f1, · · · , fN ]T , AX,φ = (φ‖xi − xj‖).

Then enforcing the interpolation constraint (3.1) with a Pf in the form of (3.4) leads to

AX,φc = f. (3.5)

The fact, that φ is assumed to be strictly positive definite guarantees that the interpolation

matrix AX,φ is invertible. Therefore, c = A−1
X,φf .

In this classical setup, there is no restriction on the distribution of the data sets xj except

for being pairwise distinct. However, distribution of the xj is an important issue in the

so–called multistep interpolation method, i.e., the sequence of data are to be in increasing

subsequences. In order to define multistep interpolation, we consider normal multireso-

lution approximation. For simplicity, this has been described in the following section for

1–D case, since it may be easily generalized to multivariate case with or without some

modification, i.e., the modification does not affect the generality of underlying hypothesis

in this scheme.
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3.2 Multistep Interpolation

To begin with, we are given a smooth curve f . This curve can be parametrized in many

ways; often we shall assume it is C1 continuous, hence we could parametrize it by arc

length. It will be more convenient for us, though, to parametrize it by one of the x– or

y–coordinates. A piecewise C1 function can always be broken up into adjacent finite length

pieces, possibly overlapping, that can be well parametrized by the x–coordinate (with, say,

|dy/dx| ≤ 2) or by the y–coordinate (with, say, |dx/dy| ≤ 2); by restricting ourselves to

these different pieces separately, and interchanging the names of the two coordinates, we

may thus assume that the curve f is parametrized by its x–coordinate, so that

f = {(x, γ(x)) : x ∈ I},

where f is a smooth function and I is an interval, a half–line, or all of R. They can be

applied to each piece of the curve individually and yield uniform results for the whole curve

if the number of pieces are finite. For convenience, always assume that the definition of γ

is extended to all of R. In many cases, we shall assume that Lipschitz continuity with a

Lipschitz exponent 0 < β ≤ 1.

Given a (possibly finite) sequence xj of Xj in I, we define yj = γ(xj). For every j,

we compute the two predictor sequences x∗j+1 and y⋆j+1 using an interpolating stationary

linear subdivision scheme S,

x∗j+1 = Sxj , y∗j+1 = Syj.

These are in general not related via the function γ , i.e., y∗j+1 6= γx∗j+1. In a normal

multiresolution, first determine, for every k, the line through the point (x∗j+1,2k+1, y
∗
j+1,2k+1)

that is perpendicular to the line connecting (xj,k, yj,k) and (xj,k+1, yj,k+1); the intersection

point of this normal line and the curve of f gives the new point (xj+1,2k+1, yj+1,2k+1). The

x–coordinate of this new odd–indexed point thus satisfies

(xj+1,2k+1 − x∗j+1,2k+1)(∆xj)k + (yj+1,2k+1 − y∗j+1,2k+1)(∆yj)k = 0; (3.6)

the even–indexed points are just taken over from the previous level xj+1,2k = xj,k. Let

the whole procedure be described by the application of the nonlinear operator Nj to the
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original sequence

xj+1 = Njxj.

Always start out with a strictly increasing sequence x0, i.e.,∆x0 > 0; in order to avoid

messy difficulties with the definition of polygonal line. We would like to have ∆xj > 0,

for all j. In general, (3.6) does not always have solutions such that this is true, however,

we shall derive conditions on S, x0, and f to ensure this. In any case, we shall apply

the operators Nj only to sequences xj for which ∆xj > 0. Also, remark that (3.6) may

have several solutions for which ∆xj > 0. For definiteness assume that there is a rule

established which uniquely picks out one of the solutions, should there be many. The rule

could for instance be to pick the solution closest to (or furthest away from) the predicted

point. When we say that the points on the next finer level are well defined, we mean

that there exist solutions xj+1 with ∆xj+1 > 0 satisfying (3.6) and, if there are many such

solutions, we implicitly assume that the rule decides which of them to select.

In order to define the convergence we wish to establish, we introduce auxiliary functions

γj. Each γj interpolates linearly the values yj,k at the xj,k; if xj is strictly increasing,

this is a well–defined function. Without restriction, also assume that I is the smallest

interval containing all points xj,k so that γj is defined on the whole of I. The graph of γj,

the (piecewise linear) curve of fj, is the normal multiresolution approximation at level j.

(Note that fj depends on f , x0 and S as well as on j). We will then say that the normal

multiresolution approximation fj converges to f if

‖γ(x)− γj(x)‖L∞(I) = sup
x∈I

|γ(x)− γj(x)|

converges to 0 as j → ∞. Now, if γ ∈ Cβ and β̃ = min(β, 1) > 0 then

sup
xj,k≤x≤xj,k+1

|γ(x)− γj(x)| ≤ Ω(β̃, γ)(∆xj)
β̃
k , (3.7)

so that

‖γ − γj‖L∞(I) ≤ C |∆xj|β̃∞.

The normal multiresolution approximation therefore converges to the desired limit if xj

remains strictly increasing for all j and if |∆xj|∞ → 0 as j → ∞.

We shall occasionally single out one particular family of interpolating subdivision schemes

for use in the prediction step: the so–called Lagrange interpolation subdivision schemes, in
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which the new odd–indexed points are given the values taken by a polynomial determined

by several neighbouring old points. For instance, in the two–point scheme, uj+1,2k+1 is

given the value at t = 1/2 of the linear polynomial that takes the values uj,k at t = 0 and

uj,k+1 at t = 1; in other words,

uj+1,2k+1 =
1

2
(uj,k + uj,k+1).

In the four-point scheme, uj+1,2k+1 is given the value at t = 1/2 of the cubic that takes

the values uj,k−1, uj,k , uj,k+1, and uj,k+2 at t = -1, 0, 1, 2, respectively, leading to

uj+1,2k+1 =
9

16
(uj,k + uj,k+1)−

1

16
(uj,k−1 + uj,k+2).

In general, the 2l–point scheme gives uj+1,2k+1, the value at t = 1/2 of the (2l− 1)–degree

polynomial that takes the values uj,k+m at t = m where m = −l + 1, · · · , l. We shall

denote the 2l–point scheme by S2l. In particular, the two–and four–point schemes will be

denoted by S2 and S4:

(S2uj)2k+1 :=
1

2
(uj,k + uj,k+1).(S4uj)2k+1 :=

9

16
(uj,k + uj,k+1)−

1

16
(uj,k−1 + uj,k+2).

Since these are all interpolating schemes we have, of course, (S2uj)2k = (S4uj)2k =

(S2luj)2k = uj,k. When the prediction step is computed by means of S2, i.e.,

x∗j+1 = S2xj, y∗j+1 = S2yj,

it turns out that the analysis of normal multiresolution approximation is especially simple.

3.2.1 An Iterative Procedure for Interpolation

The above procedure is analogous to the version of Newton’s method for polynomial

interpolation in one dimension. Let the interpolation condition be Sf,X(xj) = f(xj),

j = 1, 2, · · · , n where xj, j = 1, 2, · · · , n are points of X that are all different, and where

Sf,X is now required to be polynomial of degree at most n − l from R to R. Then the

Lagrange functions χn(x) = 1, x ∈ R, and

χk(x) =
n∏

j=k+1

x− xi
xk − xi

, x ∈ R, k = 1, 2, · · · , n− 1, (3.8)
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and we write Sf,X in the form

Sf,X(x) =
n∑

k=1

µkχk(x), x ∈ R. (3.9)

It follows that the partial sum

Sf,X(x) =
n∑

k=l

µkχk(x), x ∈ R, (3.10)

is unique polynomial of degree at most n − l that interpolates the last n − l data, where

l is any integer in [1, n]. Further, µl is the coefficient of xn−l in Sl divided by coefficient

of xn−l in χl. Thus, it is possible to calculate the parameters µk, k = 1, · · · , n, of formula

(3.9).

Specifically, for radial basis functions interpolation in d ≥ 1 dimension to the data

f(xj) = fj, j = 1, · · · , n, analogue of expression of (3.8) can be represented as

χk(x) =
n∑

j=k

λk,jφ(‖x− xk‖) + pk(x), x ∈ R
d, (3.11)

whose parameters are fixed by the condition

χk(xj) = δj,k, j = k, k + 1, · · · , n (3.12)

n∑

j=k

λk,j = 0 and
n∑

j=k

λk,jxj = 0, (3.13)

where φ is a radial basis function and where pk is polynomial from R
d to R of degree at

most d− 1. Thus, the Lagrange function χk from a space

span{φ(· − x1), · · · , φ(· − xn)}

for X := {x1, · · · , xn}. Hence, the normal interpolating points are interpolated by radial

basis functions. Thus, the problem is set to

Sk(x) =
n∑

j=1

µjϕ(x− xj) +
N∑

l=1

βlpl(x), for x ∈ R. (3.14)

Now, we have to specify the condition on which the radial basis function has a unique

representation for the above normal interpolating functions.
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3.3 Interpolating Basis Function

Now, consider interpolation of real-valued functions f defined on a set Ω ⊂ R
d, d ≥ 1.

These functions are evaluated on a set X := {x1, · · · , xNX}, (NX ≥ 1) of pairwise distinct

points x1, · · · , xNX in Ω. If NX ≥ 2, d ≥ 1 and Ω ⊂ R
d are given.

It is well known that there is no d-dimensional space of continuous functions on Ω that

contains a unique interpolant for every f and every set X := {x1, · · · , xNX} consisting

of NX data points. Thus, the family of interpolants must necessarily depend on X. This

can easily be achieved by using translates Φ(x − xj) of a single continuous real-valued

function Φ defined on R
d.

Further simplification is obtained by letting Φ be radially symmetric, i.e.:

Φ(x) := φ(‖x‖2), (3.15)

with a continuous real-valued function φ on R
d and the Euclidean norm ‖.‖2 .

Interpolants Sf,X to f can then be constructed via the representation

Sf,X =

NX∑

j=1

αjΦ(x− xj), (3.16)

where the coefficients α1, · · · , αNX ∈ R solve the linear system

f(xk) =

NX∑

j=1

αjΦ(xk − xj), 1 ≤ k ≤ NX ,

provided that the symmetric NX ×NX matrix

AX,Φ :=




Φ(x1 − x1) · · · Φ(x1 − xNX )
...

. . .
...

Φ(xNX − x1) · · · Φ(xNX − xNX )




is nonsingular. This is the simplest form of radial basis function interpolation, but for a

variety of choices of Φ, it is necessary to add polynomials to the interpolant (3.16).

Let P d
q denote the space of d-variate polynomials of order not exceeding q, and let the

polynomials p1, · · · , pQ be a basis of P d
q in R

d. The Q additional degrees of freedom of the
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extended representation

Sf,X =

NX∑

j=1

αjΦ(x− xj) +

Q∑

l=1

βlpl(x) (3.17)

are compensated by the Q additional equations

NX∑

j=1

αjpl(xj) = 0, 1 ≤ l ≤ Q. (3.18)

With the matrix

P T
X :=




p1(x1) · · · p1(xNX )
...

. . .
...

pQ(x1) · · · pQ(xNX )


 ,

we can write the interpolation conditions

f(xk) =

NX∑

j=1

αjΦ(xk − xj) +

Q∑

l=1

βlpl(xk), 1 ≤ k ≤ NX ,

together with (3.18) as a linear system


 AΦ,X PX

P T
X 0




 α

β


 =


 fX

0


 , (3.19)

where the data from f form a vector fX := (f(x1), · · · , f(xNX ))T . Solveability of this

system depends on two conditions. First, the matrix AΦ,X should be nonsingular on the

vectors α satisfying (3.18). Second, polynomials in P d
q should be uniquely determined by

their values on X, i.e., p ∈ P d
q satisfies p(xi) = 0, for all xi ∈ X, then p = 0.

The space

VN = span{Φ(· − k) : k ∈ Zd}

form a multiresolution analysis for F(Ω) and contain Πd, where F is some known function

spaces, such as Sobolev spaces.

Given Ω ⊂ R
d, it is to construct suitable subspaces of Vj whose restriction Vj(Ω) to Ω

from a multiresolution of F(Ω):

V0(Ω) ⊂ V1(Ω) ⊂ · · · ⊂ F(Ω),
∞⋃

j=0

Vj(Ω) = F(Ω),

and contain the space ΠN(Ω) of all polynomials of coordinate degree N of Ω.
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The discussion of the first condition is simplified if non–singularity is replaced by posi-

tive definiteness of the basis function. Moreover, whence the interpolating basis function

is multiquadric or compactly supported
∑Q

l=1 βlpl(xk) = 0. It further simplifies the repre-

sentation of a function being interpolated.

Definition 3.3.1 A function Φ : Rd → R with Φ(−x) = Φ(x) is conditionally positive

definite of order q on R
d, if for all sets X = {x1, · · · , xNX} ⊂ R

d with NX distinct points

and all vectors α := {α1, · · · , αNX} ∈ R
NX with (3.18) the quadratic form

NX∑

j,k=1

Φ(xj − xk) = 0

attains nonnegative values and vanishes only if α = 0.

In a fundamental paper Micchelli (1986) related the conditional positive definiteness of

functions Φ of the form (3.15) to complete monotonicity of derivatives of all most every-

where, and this technique allows to prove conditional positive definiteness for a variety

of radial basis functions ϕ, such as thin plate splines, where ϕ(x) = x2 log(x), for all

x ∈ R
d, which are particularly suited for interpolation from planar scattered data. Fur-

ther commonly used radial basis functions are given by the Gaussians, ϕ(x) = exp(−x2),
the multiquadric ϕ(x) = (c2 + x2)β, β > 0 and β /∈ N and the inverse multiquadric,

ϕ(x) = (c2 + x2)β, β < 0, for all x ∈ R
d, where c is a positive constant.

Remark 3.3.1 The positive definiteness of Φ guarantees that all possible interpolation

problems posses a unique solution and this then justify referring to Φ as a basis func-

tion. Thus, the interpolation equation (3.16) define the coefficients {αj : j = 0, 1, · · · , N}
uniquely for any given right–hand side of {fj : j = 0, 1, · · · , N}. The definition of the basic

function Φ often involves with parameters λ and β defined as above, e.g., the multiquadric

φλ(x) := (x2 + λ2)β/2, for all x ∈ R
d,

whose properties are well understood, both theoretically as well as practically. One of the

reasons for this particular function is that desire to use the λ > 0 as a tension parameter.

These shape parameters can be used to control the flatness of φ, and finding a good values

for these parameters is a major issue of data approximation (see e.g., Fornberg and Zuev
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(2007), Frank (1982)). The function Sf,X based on (3.17) exactly interpolates the given

data, when N is large, solving this (often dense and ill–conditioned) linear system can be

rather time consuming.

Curious enough, each conditionally positive definite function Φ does not only define an

interpolation method, but also defines an inner-product space FΦ of functions. In the

following section, it is described the construction of such a space Vj, for j = 0, 1, · · · , and
introduced the exponentially decaying positive definite radial basis functions that generate

the Sobolev spaces W k
2 .

Remark 3.3.2 Although, this study concentrated on the interpolatory binary subdivision

schemes using the multiquadric, the proposed approach can also be applied to any basis

function φ whose Fourier transform φ̂ coincides on R\0 with some continuous function

while having a certain type of singularity (necessarily of a finite order) at the origin, i.e.,

φ̂ is of the form | · |nφ̂ = F > 0 with n ≥ 0 and F ∈ L∞(R). For instance, the Gaussian

function φ(x) := e−cx
2

, c > 0, and inverse multiquadric function φ(x) := (x2 + λ2)−1/2,

λ > 0, can be candidates.

3.4 Multiscale Approximation

In particular, we have increasing sequence of xj of Xj with nestedness. Therefore, hi-

erarchical method which starts with a decomposition of X into nested sequences such

that

X1 ⊂ X2 ⊂ · · · ⊂ XM−1 ⊂ XM = X. (3.20)

This allows the interpolation problem to be broken–up into M steps. The decomposition

strategy make use of Normal Subdivision (NS) triangulation and is designed so that the

density of the points in each Xj is as uniform as possible and increases smoothly as j

increases.

In this section, we shall use (x, γk(x)) to denote the points in R
d. Also, assume that the

boundary of Ω is a simple closed curve Γ which is the union of curves Γk, k = 1, 2, · · · ,m,
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with the following properties: Γk has endpoints pk−1 and pk when traversed in a clockwise

direction. For even k, Γk can be parameterized by (x, γk(x)) , x ∈ Ik, with Ik, an interval

with endpoints xk−1 and xk and γk is in LipM1. Recall that LipM1 is the set of all

continuous univariate functions g which satisfy ‖g′‖ ≤M . We shall assume (without loss

of generality) that M ≥ 1. When k is odd, Γk can be parameterized by (γk(y), y), y ∈ Ik,

with Ik be an interval with endpoints yk−1 and yk and γk is in LipM1.

Given this setting, it is reasonable to infer the convergence of such methods. For this, it

is assumed that the analysis is performed in a bounded open region of Rd, and the data

values {fj : j = 1, 2, · · · } come from some continuous function F : Rd → R with

F (xj) = fj j = 1, 2 · · · , .

Then if Sm(x) is the function which interpolates the data at {xj : j = 1, 2, · · · ,m}, and
if {xj : j = 1, 2, · · · , } become dense, we ask whether there is a (maybe smaller) bounded

open region of Rd on which

|Sm(x)− F (x)| → 0 as m→ ∞. (3.21)

A more fundamental question, however, is whether this property holds, not for the

function which interpolates, but for the best approximation from the linear space. So,

given {xj : j = 1, 2 · · · , } which become dense, do there exist a sequence of functions

tm(x), such that

tm(x) =
m∑

i=1

λmi ϕ(‖x− xi‖) +
n∑

j=1

µmj pj(x),

(where it is no longer necessary that tm(xi) = fi, for i = 1, · · · ,m) and some bounded

open domain on which

|tm(x)− F (x)| → 0 as m→ ∞.

By Jackson (1988), sufficient conditions on the linear space for the above result to hold

by assuming ϕ satisfies the homogeneity condition, and assuming that there exist {µi ∈
R : i = 1, 2, · · · ,m} and {xi ∈ R : i = 1, · · · ,m} such that the function

h(x) =
m∑

i=1

µiϕ(‖x− xi‖) (3.22)

has the following properties: ∫

Rd

|h(x)|dx <∞, (3.23)
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and ∫

Rd

h(x)dx 6= 0. (3.24)

We briefly review the results stated in Jackson (1988).

Theorem 3.4.1 Suppose that ϕ is homogeneous, then given a function h(x) defined in

(3.22) and satisfies (3.23) and (3.24). In a bounded open domain D with closure(D) ⊂ D̃

a continuous function F : closure(D̃) → R and a sequence of points {zi : i = 1, 2, · · · , }
which become dense in D̃. Suppose there exist N and {λi : i = 1, 2, · · · , N} such that for

all x ∈ D, then we have

|F (x)−
N∑

i=1

λiϕ(‖x− xi‖)| < ǫ for ǫ > 0.

The above theorem states the general (sufficient) condition for local uniform convergence

of the interpolating scheme. As a special case, existence of such function ϕ(r) = r is

considered when d is odd. This can be generalized to cover the cases ϕ(x) =
√
x2 + c2 and

ϕ(x) = 1/
√
x2 + c2.

Theorem 3.4.2 In R
d, d ≥ 1 and d is odd, then there exist a function h(x) as defined in

(3.22) and satisfying (3.23) and (3.24) with ϕ(x) =
√
x2 + c2 uniformly converges locally.

Theorem 3.4.3 In R
2d+1, d ≥ 1 there exist function h(x) as defined in (3.22) and satis-

fying (3.23) and (3.24) with ϕ(x) = 1/
√
x2 + c2 uniformly converges locally.

Proofs of above two theorems can be found in Buhmann (1990).

Both multiquadric and inverse–multiquadric are, however, not integrable. But, each ϕ

can be considered as tempered distributions or generalized functions, and their Fourier

transform in the sense of generalized functions are for r = ‖x‖,

ϕ̂(r) = −π−1(2πc/r)(n+1)/2K(n+1)/2(cr), r > 0, (3.25)

when ϕ(r) =
√
r2 + c2 and

ϕ̂(r) = 2(2πc/r)(n−1)/2K(n−1)/2(cr), r > 0, (3.26)

when ϕ(r) = 1/
√
r2 + c2. Here {Kj(z) : z > 0} for j ≥ 0 are modified Bessel functions

which are positive and smooth in R
+, have a pole at origin and decay exponentially.
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3.5 Space Spanned by Basis Function

In this section we study the approximation properties of this interpolation process in case

of denser and denser sets of centers X. To this end we introduce the necessary results

about native spaces, fill distance and numerically accessible Power functions. The power

functions that arise from interpolation with s radial basis function Φ on a space FΦ defined

by different radial basis functions Φ.

To estimate the error on any interpolation or approximation, we have to assume that

the (unknown) function, we are interested in, comes from a known space. In the theory of

radial basis function interpolation this space is in general the native Hilbert space of the

underlying basis function. The native space FΦ consists of all distributions f ∈ S
′

that

have a generalized Fourier transform f̂ that satisfies f̂√
Φ̂
∈ L2(R

d). In particular, if Φ is

positive definite with Φ ∈ L1(R
d) then

FΦ = {f ∈ L2(R
d) :

f̂√
Φ̂

∈ L2(R
d)}.

The native space FΦ possesses the semi–norm

|f |2Φ = (2π)−d
∫

Rd

|f̂(ω)|2
Φ̂(ω)

dω (3.27)

with the null space P d
m. Thus, | · |Φ is a norm if Φ is positive definite. In this case FΦ

is a Hilbert space. If Φ is conditionally positive definite of order m > 0, then the space

FΦ/P
d
m is a Hilbert space. For functions u ∈ FΦ it is possible to bound the error by

|f(x)− Sf (x)| ≤ PX,Φ|u|Φ, (3.28)

with the so-called Power function PX,Φ defined pointwise as the norm of the error func-

tional. This Power function can be bounded in terms of the local data density given

by

hρ(x) := sup
‖y−x‖2<ρ

min
1≤j≤N

‖y − xj‖2, ρ > 0.

But, if we restrict ourselves to basis functions having an algebraically decaying (general-

ized) Fourier transform, we choose X ⊂ Ω and to bound the Power function also in terms

of the global data density

h = hX,Ω := sup
x∈Ω

min
1≤j≤N

‖x− xj‖2, (3.29)
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as long as satisfies a uniform interior cone condition. In this case, the Power function can

be bounded via PX,Φ(x) ≤ CF (h).

However, if Φ is the Gaussian then the native space is rather small, since the Fourier

transform of any function from the native space must decay faster than the Fourier trans-

form of the Gaussian which is a Gaussian itself. This argument is often used to diminish

the importance of native spaces. But, even the native space to Gaussian contains at least

all band–limited functions and this space plays an important role in sampling theory, in

particular, in Shannon’s famous sampling theorem.

3.6 Approximation in Sobolev spaces

It is interesting to turn the investigation into the approximation error between f and the

Sf,X coming from VN of W k
2 (Ω), where VN is given by

VN := span{Φ(· − x1), · · · ,Φ(· − xN)}+ P
d
m

belonging to a special positive definite function Φ : Rd → R is at least a C1 function.

P
d
m denotes the space of polynomials of degree less than m and X = {x1, · · · , xN} ⊂ Ω

is a set of pairwise distinct centers. The most interesting case is when Φ is compactly

supported and m = 0, i.e., no polynomials are added. That is the Interpolating Normal

Basis function which is compactly supported. In this case the stiffness matrix

a(Φ(· − xj),Φ(· − xk))

is sparse. Moreover, for a radially symmetric and a radial Φ, i.e., Φ(x) = φ(‖x‖2), x ∈ R
d,

with a function φ : Rd → R, most of the entries of the stiffness matrix can be easily

computed.

Construction of such basis function is as follows: consider the transform ϕ(‖·‖) : Rd → R

to ϕ̂(‖ · ‖) : Rd → R, the transform would be the function

F (x) :=
∑

j∈N

µje
−i(x,j)ϕ̂(‖x‖), x ∈ R

d. (3.30)

Thus, F can be continued into the origin, i.e., F (0) := lim‖x‖→0 F (x) is well defined, and

F (x) is k–times continuously differentiable at 0 (it is smooth elsewhere in R
d).
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Assume that u to be somewhat more regular, say u ∈ W k
2 (Ω) with k > d/2. Moreover,

according to the Lipschitz smoothness of the boundary Ω there is a continuous extension

mapping E : W k
2 (Ω) → W k

2 (R
d), and denote the extended function Eu ∈ W k

2 (R
d) by

again u. This allows to use the theory of radial basis functions to identify W k
2 (R

d) with

the native space FΦ to a radial basis function Φ ∈ L1(R
d) with Fourier transform Φ having

the property

c1(1 + ‖ · ‖)s ≤ Φ(·) ≤ c2(1 + ‖ · ‖)s, (3.31)

where s = d/2 + k + 1 and c1 and c2 are some positive constants. On account of norm

equivalence we have

|f(x)− Sf (x)| ≤ C‖f‖W k
2
(Rd)PX,Φ(x). (3.32)

In view of the function F (x), we have constructed above, the power function PX,Φ(x) can

be bounded from above in the following manner. There exists a h1 such that for all X

with h ≤ h1 and all x ∈ Ω the estimate

|PX,Φ(x)| ≤ Chk+1 (3.33)

is valid. Here C denotes a positive constant independent of x and X. We say that a set Ω

has the cone property if and only if there exists a θ > 0 and r > 0 such that for all t ∈ Ω

a unit vector ζ(t) exists such that the cone

C(t) := {t+ λη : η ∈ R
d, ‖η‖2 = 1, ηT ζ(t) ≥ cosθ, 0 ≤ λ ≤ r}

is contained in Ω. It is obvious normal subdivision scheme satisfies cone condition then

we have the following theorem.

Theorem 3.6.1 Let s = d/2 + k + 1 and Φ satisfies (3.31). Let Ω be a bounded open

subset of Rd having Lipschitz boundary ∂Ω. Then there exist constants h0 and C such that

for every f ∈ W k
2 (R

d) the interpolant Sf,X on X = {x1, · · · xN} ⊂ Ω satisfies

‖f − Sf‖ ≤ C‖f‖W k
2
(Ω)h

k+1, (3.34)

if h ≤ h0 with h defined as

h := sup
x∈Ω

min
1≤j≤N

‖x− xj‖. (3.35)

Thus, the interpolation with Φ provides approximation of order k + 1.
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3.7 Summary

In this chapter, a sufficient condition for interpolating basis function of normal multireso-

lution is established with multiquadric function. Moreover, its multiresolution properties

are established with the aid of uniform cone condition in a bounded domain. The re-

markable fact is that the interpolating multiscale approximation with a basis function of

suitable translations and scaling.

It is clear from the above discussions that the normal multiresolution approximation can

be represented with interpolating basis function which is Hardy’s multiquadric. But, it

does not play any positive role with the wavelet concepts, since the basis function is not

compact. Then the following chapter develop an quasi–interpolating basis function with

the compact support, with the principle of quasi–interpolating wavelet transform concepts

on real line. The basis function is constructed with the second order divided difference of

multiquadric functions.
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Chapter 4

Quasi–Interpolating Wavelets

4.1 Interpolation Using Multiquadric Functions

Spaces spanned by finitely or countably many translates of one or several functions play

an important role in spline theory, radial basis function theory, sampling theory, and

wavelet theory. Spline theory stresses the case when the generating functions are compactly

supported, while sampling theory singles out the case when the spectrum (i.e., the support

of the Fourier transform) of the generating functions is compact. This fact has been known

for a long time and usually denoted Shannon’s Sampling Theorem. If a function f is not

band–limited but has an absolutely integrable Fourier transform f̂ , then IWf converges

to f , where IWf represents Whittaker’s cardinal series (Sickel, 1992).

Radial basis functions are known to be useful and accurate to the approximation of

functions. The key idea is to approximate from a space spanned by translate of single

function ϕ, usually a global support, where the translate take the form ϕ(| · −xk|) and

the xk’s are given centers in a finite set X. They were first introduced in interpolating

schemes but, because of their high quality approximation, they are used for many different

approximation tools. Radial functions methods are easy to implement. Among all radial

basis functions currently in use, the multiquadric radial function ϕ(r) =
√
r2 + λ2 is

probably the best understood both theoretically and from a practical point of view, and

also it is the one most frequently used, partly by virtue of the variable real parameter λ.
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Moreover, multiquadric function gives exact representation with normal multiresolution

approximation meshes.

The best possible choice of spaces S(ϕ) are spanned by translation of multiquadric

function with knot spacing 2−jk, i.e.,
√

(· − 2−jk)2 + λ2, k ∈ Z, then the known theory of

radial function provides essentially the same approximation order as splines and as well as

infinite differentiability. The generating functions in the univariate multiquadric setting

with scattered center are described by Buhmann (1990) and Beatson and Powell (1992).

The theory of prewavelets on non–equally spaced data is described in Buhmann (1994,

1995), in particular, the multiquadric functions and allowing the centers to be scattered.

A very general account of generating prewavelets from shift–invariant spaces (including

radial function spaces with gridded centers) is given by de Boor et al. (1993), but their

technique cannot be applied to scattered data.

The main concern of this dissertation is that constructing compactly supported quasi

interpolating basis function φ which interpolate the given function f . The basis function

which we call it as Quasi–Interpolating Wavelet, i.e., a space S(φ) which is the topological

span of the basis functions. In this case, the underlying space S(φ) is meant for decompo-

sition of functions from some known spaces, such as Besov spaces. In radial basis function

theory, neither of these is assumed, and, instead, the computational simplicity as well as

the positive definiteness (i.e., the positivity of the Fourier transform) of the generating

functions is preferred. Moreover, the radial basis function does not play any positive role

with wavelets, since they are not compactly supported function. In order to circumviate

this problem we have to look for such functions which are spanned by these multiquadric

functions.

4.2 Abstract Setting

A Schauder basis of a Banach space (X, ‖ · ‖) is any sequence {xn} ⊂ X such that each

x ∈ X has an expansion

x =
∞∑

n=0

an(x)xn,
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convergent in the norm ‖ · ‖ with uniquely determined functional an(x). According to

Banach–Steinhans theorem the partial sums

Snx =
n∑

i=0

ai(x)xi

are uniformly bounded as linear operators on X and the functionals ai are continuous. It

should be noted that for the interpolating systems with nodes at {xi}, the linear functional
ai(f), for f ∈ C(I) are necessarily of the form,

ai(f) =





f(xi) for i = 0

f(xi)− Sn−1f(xi) for i ≥ 1
,

and therefore ai(f) is a linear combination of the functional δif = f(xi), i = 0, 1, · · · , n
for n ≥ 0.

Let c be some string of data c(k), k ∈ I, where I is some (finite or possibly infinite)

index set. These data could represent gray scale values of a digital image, statistical noisy

data, or some control points in some curve or surface representation, or approximation

solutions of some discreterized operator equation. The common ground for these rather

different interpretation is that these data could be viewed as coefficient of some expansion

f =
∑

k∈I

c(k)ϕk, (4.1)

where the ϕk (typically scaler–valued) functions defined on some domain (or manifold)

Ω (which is topologically equivalent to some bounded or unbounded domain) in R
d. As

a simple example, one could take ϕk as interpolating (wavelet) basis function relative to

some knot sequence in an interval Ω. When each c(k) is a point in R
d say, f represents a

space curve. The c(k) then covey geometrical information on the curve or, more precisely,

on the location of the points f(x), x ∈ Ω. It is well known that this kind of information

can drawn from the data c(k) under much more general circumstances, namely when the

ϕk have good localization properties and sum to one. Note that this localization represents

the resolution of the underlying object only with respect to a single scale.

However, in many application it is important to extract or exploit information on the

data that could be associated with scales ranging from a very coarse to very fine level,

e.g., image processing, noise removal etc. Multiscale representation of data usually convey
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accurate information about the smoothness or regularity of the underlying continuous

object. The central ingredient of this process is an appropriate transformation T which is

a bounded linear functional relating the fine scale data c to their multiscale representation

d

c = Td. (4.2)

In this case the transformation T is multiresolution approximation. This is clearly an

quasi–interpolating transformation. Hence, if we consider the transformation in above

settings then there must be quasi–interpolating basis functions which satisfy the properties

in Definition 4.2.1.

The following definition is derived from Donoho (1992) with the property of quasi–

interpolation.

Definition 4.2.1 A quasi–interpolating wavelet is a father function ϕ, satisfying the

following conditions.

IW1. Quasi–Interpolation. ϕ as the unique piecewise continuous functions relative to an

interval Ij satisfying

ϕj,k(m) = δm,k, m, k ∈ Ij, (4.3)

where δ is the Kronecker sequence.

IW2. Nestedness. For some Ij ⊂ Ij+1, the basis function ϕj,k, satisfy

ϕj,k =
∑

m∈Ij+1

ϕj,k(m)ϕj+1,k. (4.4)

IW3. Polynomial span. Interpolates the values of a given function f , at the given distinct

interpolation points of R with 1–unisolvent set.

IW4. Regularity. For some real 0 < β ≤ 1, ϕ is Lipschitz continuous of order β.

IW5. Localization. ϕ and its derivative decay rapidly

|ϕm(x)| ≤ C(1 + |x|)−1−ε, x ∈ R, ε > 0, m = 0, 1, 2, · · · . (4.5)
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IW6. Let F be the space of collection of uniformly continuous functions. The collection F
of restrictions fΩ of sums f =

∑
α c(α)ϕ(· − α) is finite dimensional.

By the last property, we have norm equivalence between Lp(R) and L∞(R) norms with

constants such that

Np(F) =
supf∈F ‖f‖L∞

‖f‖Lp
<∞, 0 < p ≤ ∞.

4.3 Multilevel Interpolating Operators

In this section, a more general approach of employing the concepts of quasi–interpolating

wavelets using radial basis function is developed. Consider radial function, such as mul-

tiquadric function, interpolate the normal multiresolution meshes by its translates. It is

clear that wavelet coefficients are determined only in compact neighborhood. It is the

characteristic of the quasi–interpolation. Thus, we use the interpolation to characterize

the quasi–interpolating wavelet transform.

Recall from Chapter 3 that for normal multiresolution approximation at the resolution

level j, there are given points of increasing subsequences, {xk : k ∈ Z
d}. Assume that these

points are equally spaced with distance 2−jk. They are interpolated with the multiquadric

with some non–zero coefficients {dk}k∈Zd . Here and sequel the notation 2−jk ∈ Z
d is to

denote the points in Ω ⊂ R
d at a resolution level j ∈ N, for k = 1, 2, · · · . Hence, the

interpolation at a level j is given by

Ijf =
∑

k

dkϕ(‖2j · −k‖), d ≥ 1,

is well defined and agrees with f on all points at the resolution level j. Here ‖ · ‖ denotes

the Euclidean norm on R
d.

Let σj, for j > 0, denote the scaling operator defined by (σjf)(x) = f(2−jx), x ∈ R
d.

Throughout this section n = n(ϕ) will denote the approximation degree of the given

compactly supported function φ, that is, n is the largest integer for which the distance

(using and Lp(R) norm) of any compactly supported, sufficiently smooth function to the
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scaled space Sj = {σjg : g ∈ S(ϕ)} is of order O(hn+1). We assume that n ≥ 0. Hence,

the above interpolant span scaled space

S(ϕ) := span{ϕ(2j · −k) : 2−jk ∈ Z
d}.

It is clear from the definition, S(ϕ) defines a principal shift–invariant space, but the

topology used in the definition of the space is not defined. The topology is determined

by the limit
∑

k ϕ(2
j · −k)c(k), where c(k) is the coefficient sequence. In the absence of

standard definition for the space S(ϕ) it is chosen the following one.

Definition 4.3.1 The principal shift–invariant space is the space of all locally bounded

functions f for which the sum

Ijf =
∑

k

ϕ(2j · −k)c(k) as j → ∞,

is absolutely convergent for every x ∈ R
d.

Alternatively, there is a quasi–interpolant such that,

Qjf =
∑

k

f(2−jk)φ(2j · −k),

where φ : Rd → R is of the form

φ(x) =
∑

k

µ(k)ϕ(‖2jx− k‖), x ∈ R
d, k ∈ N ⊂ Z

d,

which reproduce polynomials p ∈ Πd such that Qp = p, in odd–dimensional Euclidean

space (Rd, ‖ · ‖) of degree d. In case of the inverse multiquadric, d ≥ 3 is odd, which

reproduce polynomials, p ∈ Πd such that Qp = p, of degree d in Euclidean space (Rd, ‖·‖).
This has been extensively studied in Buhmann (1990).

It is concerned with the definition of a linear operator Q from L∞ ∩ C(Rd) into itself

with compactly supported and sufficiently smooth functions in S(ϕ)

Q : f 7→
∑

k

ψ(· − k)(Λf)(k), (4.6)

where Λf is the linear functional and ψ is of the form

ψ(x) =
∑

k

µ(k)ϕ(‖x− 2−jk‖), x ∈ R
d, k ∈ N ⊂ Z

d,
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for some mµ > d,

|µ(k)| = O(|k|−mµ) as |k| → ∞, (4.7)

with f 7→ {(Λf)(k)} is some linear assignment. At a minimum, one assumes that Λ is a

bounded map from C(Rd) (equipped with the uniform norm) to ℓ∞(Zd). In such case, the

following regularity condition of ψ must be satisfied, for some mψ > d,

|ψ(x)| = O(|x|−mψ), as |x| → ∞, (4.8)

which guarantees the sum in (4.6) to converges uniformly on compact sets (Dyn et al.,

2002). It is very convenient to assume further that Λ commutes with integer shifts, i.e.,

that Λf(α) = Λf(·+ α)(0).

For this purpose, it is important to assume slightly more: the linear operator is a local

linear operator to mean a bounded linear operator, say L, whose domain and the range

are function spaces on R
d, d ≥ 0, and which has the property that (Lf)(x) depends only

on the values of f in a compact neighborhood x+K of x, where K is a compact subset of

R
d independent of x. Likewise, a local linear functional, say λ, (defined to be later) has

the property that λf depends only on the values of f in a compact neighborhood of the

origin.

Localization is done with the aid of finitely supported localizing coefficients µ with the

property defined to have subtle decay of ψ at ∞. Then we define the interpolant as:

Definition 4.3.2 Let ϕ be a multiquadric function ϕ(r) = (r2 + γ2)β/2, where r = ‖x‖,
x ∈ R

d and γ is some positive parameter with the tension parameter β, which interpolates

the points at {xk : k ∈ Z
d}. Then we have

φ =
∑

k

ϕ(· − k)µ(k), j ∈ N, (4.9)

where µ(k) is some localization sequence and the decay rate is higher than the defined

above and the function φ is a functions in S(ϕ), known to satisfies (at least) the following

boundedness condition.
∑

k

|φ(· − k)| ∈ L∞(Rd). (4.10)
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With the above definition we have more subtle rate of decay of φ at ∞. Hence, we have

the following bounded linear operator T : C(Rd) → S(φ) defined by

Tf =
∑

k

(λf)(·+ k)φ(· − k), (4.11)

which satisfies

Tp = p, for all p ∈ Πn, n ≤ d, (4.12)

where the λ is is a bounded map from C(Rd) (equipped with the uniform norm) to ℓ∞(Zd)

and hence (due to (4.12)) T is well defined.

4.3.1 Construction of Quasi–Interpolating Wavelets

The assumption on wavelet basis function is that the basis function is quasi–interpolating

function on some known function spaces, Hence, it shares some features in common

with Donoho (1992) construction, i.e., wavelet basis functions are not orthogonal or bi–

orthogonal. By way of construction, the wavelet proposed in this research agrees with

the Donoho’s wavelet, in terms of the regularity, polynomial reproduction property and

localization conditions. But, it does not agree with the two–scale relation. Moreover,

the construction does not inherit the (orthogonal) complement space as opposed to other

settings, i.e., it is assumed that simply the finer scale scaling functions as wavelets and

the wavelet coefficients are the linear functional λf .

It is important that the sum
∑

k φ(· − k)a(k) be well defined for any a(k). Therefore, it

is assumed that each operator T is well defined and bounded as a map from ℓ∞ to C(R),

and denote the corresponding norm by ‖T‖. Some conditions related to the boundedness

of ‖T‖ are recorded in the following proposition whose proof is standard (de Boor and

Ron, 1992).

Proposition 4.3.1 The norm of the operator T is ‖∑k φ(· − k)‖, hence this operator

is bounded if and only if the series |∑k φ(· − k)| is pointwise convergent to a bounded

function.

This proposition implies that φ ∈ L1(R
d) whenever T is bounded, and, hence, that the
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Fourier transform φ̂ of φ is a well–defined continuous function. Also, a sufficient condition

for the boundedness of L is the integrability of the maximal function φ∗(x) := ‖φ‖L∞(x+c).

As is customary, in what follows for any function f defined on R
d adopt the notation

fj,k(·) := 2jdf(2j · −k), j, k ∈ Z
d, where j, k are resolution level and integer translates

of the function f respectively. The term quasi–interpolating function refers to a function

φ ∈ L1(R
d) whose translates φ(· − k), constitute a basis for L1(R

d).

The construction of quasi–interpolating functions starts on R
d with a compactly sup-

ported function φ decay fast enough at ∞ to make the map

φ∗′

: c 7→
∑

k

φ(· − k)f(k)

is well–defined and continuous from ℓ∞(Rd) to L∞(Rd). Note that such condition implies

that φ ∈ L1(R
d), and is implied by localization condition which employs the approximation

map

T : f 7→ φ ∗′

λ(f),

where λ is the local linear functional and φ∗′

is the semi–discrete convulsion operator(de

Boor and Ron, 1992).

It is mainly concerned with a space Sj which is the topological span of the shifts of

one generating function φj(· − k). More precisely, hold a collection {φj}j∈N of real–

valued measurable functions defined on R
d, where I is either the open interval (0, h0), or

a discrete subset of such an interval (e.g., 2−jk : j ∈ N) in Z
d. For each j, we look at all

linear combinations of
∑

k

φj(· − k)a(k), j ∈ N,

for which this sum converges in a certain sense and, denote by Sj the space of all limit

functions obtained in this way.

Sj = span{φj(· − k) : k ∈ Γj}, j ∈ N,

where Sj is the closure of S(ϕ).

For the following, we require the definition of a Lebesgue point of a function f on R
d.

Essentially, it is a point x near which the values of f do not deviate too far on the average

from the value f(x), and thus can be considered a generalized continuity point.
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Definition 4.3.3 The point x is a Lebesgue point of the function f(x) on R
d if f is

integrable in some neighborhood of x and

lim
ǫ→0

1

V (Bǫ)

∫

Bǫ

|f(x)− f(x+ y)|dy,

where Bǫ denotes the ball of radius ǫ about the origin, and V denotes volume.

Remark 4.3.1 This set of points has full measure in R
d, i.e., its complement has mea-

sure 0, so that, convergence of a series on the Lebesgue set implies almost everywhere

convergence. Furthermore, all continuity points are also Lebesgue points. Since the set of

continuity points of a function can have measure 0 (as for example in the characteristic

function of the rational numbers), the Lebesgue set can clearly in some instances be much

larger than the continuity set of a function.

The question is; when this space is admissible? The construction admits, in particular,

all pointwise absolutely convergent sums (with real coefficients dk), and more precisely

everywhere on the Lebesgue set of function being expanded

∑

k

dkφj(· − k)

into Sj if they are at most of polynomial growth in x and φ ∈ S(ϕ). This is clear from

the previous discussions. Hence, we seek Pjf : F → Sj which agrees in all points of

2−jk ∈ Z
d. Such interpolant always exist if there is a quasi–interpolating function χj ∈ Sj

which satisfies

χj(k) = δ0,k, j ∈ N,

with sufficient decay at ∞. This is always satisfied with our assumptions that the wavelet

defined by the Theorem 4.3.1. Roughly speaking, we call Sj the span of the 2−jk translates

of φ, and this is an exact description of Sj. In case of φ is of compact support, a case in

which the sum
∑

k φj(· − k)a(k) is locally finite, hence, arbitrary linear combinations are

allowed in this sum. Hence, Pj is the special type of linear operator which we call it as

(non–orthogonal) projection operator onto the subspace Sj.

The function φj(· − k) is then used to construct a multiresolution analysis consisting of

an ascending sequence (Sj), j ∈ N, of subspace of F . Each Sj, j ∈ N, is generated by the
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sequence of functions {φj(· − k)}k, j ∈ N (by the 2−jk shifts of φj. Moreover, as for some

Sj ⊂ Sj+1, the basis function φj,k, satisfying

φj,k =
∑

m∈Ij+1

φj,k(m)φj+1,k, (4.13)

then we have Sj ⊂ Sj+1. The functions φj satisfy the partition of unity property for

each j ∈ N and interpolating condition, then φj is linearly independent over Ωj , for all

j ∈ N. That is, linear operators (Tj)j∈N satisfy the multiresolution property with the basis

function φj, for all j ∈ N.

4.3.2 Interpolating Wavelet Transform

Let the knot–sequence X, with support [xk, xk+n+1], normalized form of a partition of

unity and let φ ∈ L1(R) with φ(x) ≥ 0, x ∈ R,

φ(x) = O(|x|−n−1−ε), x→ ±∞, ε > 0,

φ̂(ξ) > 0, ξ ∈ R and
∫∞

−∞
φ = 1 be given. We assume the following three decay conditions

hold:

|φ(x)| = C(1 + |x|)−1−ε,

|φm(x)| = C(1 + |x|)−1−ε x ∈ R, 0 ≤ m ≤ ⌊R⌋ ,

where R is the regularity of the function φ, and

|φ̂(ξ)| = C(1 + |ξ|)−3−ε,

where C is positive generic constant and ε > 0 is arbitrary. We demand the Fourier

transform φ̂ with faster rate of decay and continuous at the origin. The Fourier transform

φ̂ is well defined (Buhmann et al., 2002).

Now, we are in the position of defining interpolating wavelet satisfies the Definition 4.2.1,

for instance, consider the 2nd order divided difference equation of multiquadric function.

Theorem 4.3.1 Let f ∈ C(R) be a function, and assume that the non–decreasing se-

quence of points {xk}k∈Z are given equally spaced and the function f , can be interpolated
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with multiquadric function ϕ(r) =
√
r2 + c2, where r = ‖x‖ is the Euclidean norm and c

is constant. Define

φ(x) =
1

2

√
(x− 1)2 + C2 −

√
x2 + C2 +

1

2

√
(x+ 1)2 + C2, for all x ∈ R, (4.14)

where C is a positive constant. Then the function φ is the quasi–interpolating wavelet basis

function, which span the space of S(ϕ).

Proof : The first part is an oblivious result from the discussion of the previous chapter.

Consequently the function φ satisfies the interpolating property such that

φk = δ0,k, k ∈ Z,

where δ0,k is the Kronecker symbol that holds 0 if k 6= 0 and 1 if k = 0. Hence the first

property (IW1) of quasi–interpolating wavelet basis is satisfied.

The second property (IW2) is the direct consequence of the definition of wavelet basis

function, which is a triangular function, see remark (4.3.2) below.

The third (IW3) property is observed in the previous chapter.

The fourth property (IW4) is obvious from the definition of normal multiresolution ap-

proximation, i.e., basis functions are piecewise linear.

The fifth property (IW5) is seen from the above discussion. Final, property (IW6) is

satisfied, since the basis function is compactly supported. Hence the theorem is proved.

Remark 4.3.2 Triangular function that takes the value one at xk+1 and vanishes for

x ≤ xk and x ≥ xk+2. Hence, we may consider the process (normal multiresolution

approximation) as triangulation of a function on a compact set Ω ⊂ R.

Lemma 4.3.1 Let f ∈ C(R) and let the projection operator Pj : C(R) → Sj defined as

Pjf =
∑

k

f(xk)φj(· − k), j ∈ N, (4.15)

with the function φj defined by theorem (4.3.1) then the following holds
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1. The polynomial reproducing property such that Pjp = p, for all p ∈ ΠD.

2. We have the inclusion Sj ⊂ Sj+1.

3. If ΠD denotes all polynomials of degree ≤ D, then ΠD ⊂ Sj.

4. The formal sum 4.15 at most of polynomial growth for all continuous function f ∈
C(R).

Proof : The property (1) is the direct consequence of semi–discrete convulsion property

of the operator Pjf and the property (2) is by the definition of wavelet basis function. In

particular the basis function is the linear combination of multiquadric (in odd dimension)

gives the property (3).

By the third property(IW3), we have for any αi ∈ R, 1 ≤ i ≤ N there exists exactly one

polynomial P ∈ Πk such that P (ai) = αi, where ai is the interpolation point i.e., for an

integer D ≥ 0, the collection of formal sum

∑

α∈Zd

c(α)ϕ(· − α), (4.16)

contain all polynomial of degree D is well defined. Moreover, 4.16 gives us at most poly-

nomial growth for all continuous functions f ∈ C(R).

Consequently property (4) by the linear operator Tj defined above, since the operator

Pj is the special type of operator of Tj, for all j ∈ N.

The fourth property clearly shows that the operator Pj is a kind of projection opera-

tor, i.e., nonorthogonal projection operator onto their respective basis which satisfy the

multiresolution property. Thus, we have

S1 ⊂ S2 ⊂ · · · ⊂ Sn ⊂ · · · = F(R),

where F(R), is some topological vector space defined to be later. In the sequel, the Lp,

1 ≤ p ≤ ∞ stability of the functions {φj,k} is needed. We would address this problem in

the following chapter.
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With the quasi–interpolating wavelet basis function, define the wavelet transform of

f ∈ C(R) by sampling at different resolution levels. By the above lemma 4.3.1 and with

our hypothesis we have the following proposition.

Proposition 4.3.2 Given an interpolating wavelet ψ, of multiquadric and for f ∈ C(R),

we have sequence of projection operators {Pjf(x)}j∈N, are known as multiresolution ex-

pansion of f . Then the interpolating wavelet transform is defined as

f =
∑

j∈N

∑

k

cj,kφj,k, (4.17)

with the coefficients cj,k by sampling f ∈ C(R) at the resolution level 2−(j+1), and coarser

with the infinite sum summoned in the topographic order of the basis function φ.

Proof : This is the direct consequence of property (4) of Lemma 4.3.1 and the bounded

linear operator defined by (4.11).

More interestingly, the above decomposition is natural and, in particular, it is a detailed

correction of
∑

k cj,kφj,k at each resolution level j ∈ Z. Thus, the multiresolution approxi-

mation with multiquadric is represented with the compactly supported quasi–interpolating

basis function φ, known as quasi–interpolating wavelet basis function with the wavelet co-

efficients of distance apart from the two subsequent resolution level at the interpolating

points. Which is similar to normal wavelet coefficients. It is natural to ask convergence of

the quasi–interpolating wavelet transform.

The following corollary is the consequence of Theorem 4.2 in (Daubechies et al., 2004).

Corollary 4.3.1 Let f ∈ C(R) then we have

max
k

|dj,k| ≤ C2−jα, (4.18)

where α ∈ R is the parameter that depends on the the smoothness of the function being

interpolated and C is positive constant independent of j and k. Moreover, with the modulus

of continuity ω(f, δ) defined by

ω(f, δ) = sup
|h|≤δ

sup
x

|f(x+ h)− f(x)|,
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we have

ω(f, 2−j) ≤M2−jα, (4.19)

where M > 0 is depend on the smoothness of the function.

For multiresolution analysis it is necessary to prove the uniform convergence property.

Proposition 4.3.3 Let f ∈ C(R), then we have ‖f − Pjf‖ = 0 as j → ∞.

Proof : Let {gj}∞j=0 be the sequence of functions with resolutions j = 0, 1, · · · , further
letting the centers be strictly in ascending orders and by

∑
k∈Z ψj,k = 1 for j = 0, 1, · · · ,

we have that

gj(x) =
∑

k∈Z

f(xj,k)ψj,k(x) for x ∈ R,

where ψj,k(x) is basis functions defined above.

|f(x)− gj(x)| = |f(x)−
∑

k∈Z

f(xj,k)ψj,k(x)|.

Consequently, we have

|f(x)− gj(x)| ≤
∑

k∈Z

|f(x)− f(xj,k)|ψj,k(x).

In order to bound the difference of f , we let {ω(f, 2−j) : j → ∞} be the modulus of

continuity of f . Therefore, we have

|f(x)− gj(x)| ≤ Cω(f, 2−j),

where C is some positive constant independent of j and dependent of f . Then by Corollary

4.3.1 the result follows.

Hence, a necessary condition for the corresponding quasi–interpolation scheme uniformly

convergent is that the maxk |dj,k| is of order of 2−jβ, i.e., the approximation property of

the function is determined by its smoothness.

We are interested in the smoothness properties of φ which determine the smoothness of

the components of interpolating function. A scheme is termed C∞ if φ ∈ C∞, and it is

termed Hγ with 0 < γ < 1, if φ ∈ Hγ, namely if

|φ(x)− φ(y)| ≤ C|x− y|γ. (4.20)
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Thus, the analysis of the convergence of the scheme and the properties of φ requires the

study the scalar case when dimension of the Euclidean space is one.

Infinite sum does not make any senses with practical applications, hence by Theorem 1

in (Beatson and Powell, 1992) we have the following corollary.

Corollary 4.3.2 Let f ∈ C(R) then quasi–interpolating wavelet expansion holds, in the

sense of uniform convergence:

‖f −
∑

j≤J

∑

k≤K

dj,kψj,k‖∞ → 0

as J,K → ∞.

We thus have a non–orthogonal wavelet decomposition which exhibits explicitly as a mea-

sure of error in Vj, for j ≥ j0.

4.4 Convergence of Interpolating Wavelet Transform

The purpose of this section is to study the convergence properties of normal multiresolution

expansions, and in particular, nonorthogonal wavelet expansions. Unlike Fourier series, a

normal wavelet expansion has a summation kernel which is absolutely bounded by dilation

of radially decreasing L1 convulsion kernel H(|x − y|). This fact provide us the proof of

Lp, for 1 ≤ p ≤ ∞, convergence. This results hold in all dimensions, and apply to related

multiscale expansions. The following definition is essential in the sense of boundedness of

the projection operator Pjf .

Definition 4.4.1 A function f(x) is in the class RB if it is absolutely bounded by an L1

radial decreasing function η(x), i.e., η(x1) = η(x2) whenever |x1| = |x2|, and η(x1) ≤ η(x2)

when |x1| ≤ |x2|, and η(x) ∈ L1(R
d).

Define the space F(R) as the space of all functions φ ∈ C∞(R) such that

υm(φ) = sup
x∈R,α<m

(1 + |x|)N |φα(x)| <∞, m = 0, 1, · · · , N > 1,
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where Dα = dα

dxα
. The topology in F(R) is defined by the family of the semi–norms υm.

Then, F(R) becomes a Fréchet space and the embeddings D →֒ F →֒ S →֒ ε are continu-

ous; here ε denotes the space of all C∞ functions, S the space of the tempered distributions

of polynomial growth and D the space of C∞ functions with compact supports. By F ′

(R),

it means that the space of continuous linear functionals on F(R). A distribution T ∈ D′

is in F(R) if and only if there exist positive integers α, m0 and a bounded continuous

function f(x) on R such that

T = Dα[(1 + |x|)Nf(x)], N > 1.

Now we can define

S(R) =
{
θ(t) ∈ C∞(R) : |Dmθ(t)| ≤ C(1 + |t|)−N

}
, N > 1, m = 0, 1, 2, · · · ,

and its dual S
′

(R).

Let φ ∈ F(R). In order for it to qualify as a scaling function, φ must be associated with

a multiresolution analysis of F , i.e., a nested sequence of closed subspaces {Sj}j∈Z, such
that

{φ(· − k)} is a basis in S0,

Then, φ has the nested property such that

φj,k =
∑

m∈Ij+1

φj,k(m)φj+1,k.

In this case, there is no mother wavelet ψ ∈ F . Hence, we restrict our attention into

φ ∈ F(R) compactly supported interpolating wavelets of multiquadric of the above.

Remark 4.4.1 φ converges in a compact set ∂Ω which define a topology. There is only

one such topology; it is called the topology of pointwise convergence. Then, Ω is a compact

topological vector space; this follows from the Tychonoff theorem.

The orthogonal wavelet expansion of a function in L2(R) is known to converge to it in

the sense of L2(R) ; but the pointwise convergence is a little bit more subtle, Meyer (1992)

was among the first to study the convergence of orthogonal wavelet expansions. He showed

that if the mother wavelet is r–regular, the orthogonal wavelet expansion of a function
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will converge to it in the sense of Lp(R); 1 ≤ p < ∞; and in the sense of some Sobolev

spaces as well.

A function f(x); x ∈ R
d ; d ≥ 1, is said to be r–regular (in the sense of Meyer) if

|Dαf(x)| ≤ Cα,m
(1 + |x|)m ,

for all α with |α| ≤ r and m = 0, 1, 2, · · · , where Cα,m are constants. Here, α =

(α1, · · · , αd) is a multi–index with αi(i = 1, · · · , d) being a non–negative integer and

|α| =∑m
i=1 αi, and

Dα =
∂α

∂xα1

1 · · · ∂xαdd
.

Assuming that the scaling function φ of the multiresolution analysis is r–regular, Walter

(1995) proved that the orthogonal wavelet expansion of a function f ∈ L1 ∩ L2 converges

to f pointwise at every point of continuity of f and uniformly on compact subsets of any

interval (a, b) on which f is continuous. Later, he relaxed this condition and assumed that

φ satisfies the condition

|φ(x)| ≤ C

(1 + |x|)3 .

Kelly et al. (1994a) improved Walter’s results by proving pointwise convergence of or-

thogonal wavelet expansions not only under less stringent conditions, but also by extending

them to n–dimensions. Crucial to their proofs is the following definition.

They showed, among other things, that if φ, ψλ are in the class RB for all λ, then the

wavelet of any function f ∈ Lp(R
d) converge to f pointwise almost everywhere. Moreover,

if only ψλ ln(2 + |x|) ∈ RB, then the wavelet expansion of any function f ∈ Lp(R
d)

converges to f pointwise almost everywhere. In all the work cited above on pointwise

convergence; it is essential that the summation kernel of the wavelet series

Pm(x, y) =
∑

j<m;k,λ

ψλm,k(x)ψ
λ
m,k(y) =

∑

k

φm,k(x)φm,k(y)

be absolutely bounded by a dilation of an L1–radially decreasing convolution kernel, i.e.,

by H(2m|x− y|), where H ∈ RB.

Following Walter, φ is regular if there exist a c > 0 such that |φ(x)|, |φ(x)| ≤ c/(1+ |x|)3

for all x ∈ R. Note that for any regular wavelet φ, we have φ ∈ RB. Here we consider
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larger classes of scaling functions with polynomial order of decay N > 1. We have the

following regularity of scaling function

φ(x) = C(1 + |x|)−1−ε, ε > 0,

for some suitably chosen C (all of which include the above class).

We shall assume that the scaling function and the wavelet of the normal multiresolution

analysis, φ is in L1, and we shall not assume that they generate an orthonormal basis of V0.

This means that unlike the wavelet expansions studied in (Kelly et al., 1994a,b; Walter,

1995), ours are not necessarily orthonormal (Zayed, 2000). Therefore, it is replaced by

the weaker condition that {φ(x − k)} is an unconditional Schauder basis of V0 and it is

not assumed that φ generates an orthonormal basis, but on the other hand it is assumed

a stronger condition on φ, namely, that its Fourier transform φ̂ has a compact support.

Lemma 4.4.1 Let φj,k be the scaling function in Vj then there exist a summation kernel

such that

Pj(x, y) =
∑

k∈2−jZ

φj,k(x)φ
⋆
j,k(y), for all x, y ∈ R. (4.21)

Proof : Since {φ(x−k)} is an unconditional Schauder basis of V0, it has a biorthonormal

basis {φ⋆k(x)} such that for any f ∈ V0 we have

f(x) =
∑

k

〈f, φ⋆k〉φ0,k(x),

in the sense of L2(R), where φ0,k = φ(x − k). Similarly, for any f ∈ Vm and for fixed m,

we have

f(x) =
∑

k

〈
f, φ⋆m,k

〉
φm,k(x),

where {φ⋆m,k(x)}∞k=−∞ is the biorthonormal basis of {φm,k(x)}∞k=−∞. From the relation

〈φm, φ⋆k〉 = δk,m =

∫ ∞

∞

φ(x− k)φ⋆k(x)dx,

we obtain by a change of variable that

〈φm, φ⋆k〉 = δk,m = 2m
∫ ∞

∞

φ(2mx− k)φ⋆k(2
mx)dx.

It follows that {2m/2φ⋆m,k(2mx)}∞k=−∞ is the biorthonormal basis of {φm,k(x)}∞k=−∞ for each

m. Hence the result.
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Since we assume that {φ(x − k)} is an unconditional Schauder basis of V0 and Fourier

transform φ̂ has a compact support, for such classes, the summation kernel satisfy the

following bounds.

Theorem 4.4.1 Let Pj(x, y) =
∑

k∈2−jZ φj,k(x)φ
⋆
j,k(y) be the summation kernel generated

by the scaling function φ ∈ L1(R). If φ has an algebraic decay such that φ(x) ≤ CN
(1+|x|)N

for some N > 1 then

|Pj(x, y)| ≤ CN
2j

(1 + 2j|x− y|)N ≤ CN2
j,

for some N > 1.

Proof : Similar lines of proof of Theorem 2.5 as in Kelly et al. (1994a).

The space V0 is a reproducing–kernel Hilbert space since point evaluation is continuous.

|f(x)| = | 1√
2π

∫

E

f̂(ω)e−iωxdω| ≤ C‖f̂‖ = C‖f‖.

Therefore, it has a reproducing kernel k(t, x), which is easily seen to be a convolution

kernel. For, if f ∈ V0, then

f(x) =
1√
2π

∫

E

f̂(ω)e−iωxdω| =
∫ ∞

−∞

f(t)k(t, x)dt, (4.22)

where

k(t, x) =
1

2π

∫

E

eiω(t−x)dω = k(t− x).

The last integral in (4.22) is absolutely convergent by the Cauchy–Schwartz inequality

because both f and k are in L2(R). The reproducing kernel has also the representation

k(t, x) =
∑

n φ
⋆
nφ(x − n), where the series converges in the sense of L2. But from the

hypothesis, the series also converges absolutely and uniformly for all x and t to a function

q0(t, x). Thus, by standard arguments, q0(t, x) = k(t, x) converges almost everywhere.

One can also show directly that if f ∈ V0, then

∫ ∞

−∞

f(t)k(t, x)dt =
∑

n

(∫ ∞

−∞

f(t)φ⋆ndt

)
φ(x− n)

=
∑

n

(f, φ⋆n)φ(x− n) = f(x).
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Since strong convergence implies weak convergence and, in addition, strong convergence

in a reproducing–kernel Hilbert space implies pointwise convergence, as well as uniform

convergence on any set on which k(x, x) is uniformly bounded.

The reproducing kernel of V0 is given by

P0(x, y) =
∑

k

φ(x− k)φ(y − k),

where φ is the scaling function. The series and its derivatives with respect to k converge

uniformly on x ∈ R because of the regularity of φ ∈ F , i.e.,

|φα(x)| ≤ C(1 + |x|)−N , α = 0, 1, 2, · · · , N > 1.

Then, associated with the increasing sequence of subspaces {Vj}j∈Z we have the projec-

tions of L2(R) onto Vj given by

Pjf =
∑

k

〈
f, φ⋆j,k

〉
φj,k, for f ∈ L2(R).

From now on, we shall work with a scaling function φ in the class of RB; that means

that φ is absolutely bounded by an L1 radial decreasing function η, i.e., |φ(x)| ≤ η(x) with

η(x)(0) <∞, η(x1) = η(x2) whenever |x1| = |x2|, η(x1) < η(x2) whenever |x1| > |x2| and
η ∈ L1(R). Under the assumption φ ∈ RB we get that the kernel Pj(x, y) of Pj is given

by 2jP0(2
jx, 2jy) with P0(x, y) =

∑
k φ(x− k)φ(y − k), in the sense that, for f ∈ L2(R).

Pjf(x) =

∫

R

Pj(x, y)f(y)dy. (4.23)

In (Kelly et al., 1994a) proved that if φ ∈ RB then the kernel P0(x, y) satisfies

|P0(x, y)| ≤ H(x− y), (4.24)

where H(|x|) is a bounded radial decreasing L1(R) function (see Lemma 2.8 in Kelly et

al. (1994b)). From the estimate (4.23), (Theorem 2.6 [11] in Kelly et al. (1994b)), the

operators Pjf(x) =
∫
R
Pj(x, y)f(y)dy are well defined for f ∈ Lp(R), 1 ≤ p <∞, and Pjf

converge to f almost everywhere and in the Lp norm, when j → ∞.

Note that φ is well defined in the linear space S0 and supported in the a compact set Ω.

Moreover, these functions belong to Lp, for 1 ≤ p ≤ ∞. Then the kernel Pm(x, y) has the
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form

Pm(x, y) =
∑

k

φm(x− k)φm(y − k), (4.25)

i.e., for every x, y ∈ R
d, with convergence of both sums in the right occurring pointwise

on compact subsets of a positive distance from the diagonal D = {(x, y) : x = y}. The

kernel converges to a delta distribution δ(x− y) as m→ ∞ in the following sense :

Theorem 4.4.2 Under the assumption that φj,k ∈ RB, the kernel Pj(x, y) of the projec-

tions onto Sj satisfy the convulsion bound

|Pj(x, y)| ≤ C 2j H(2j|x− y|), (4.26)

where H(| · |) ∈ RB, i.e., H(| · |) is a radially decreasing L1 function.

Proof of this theorem directly follows form Theorem 2.6 [11] in Kelly et al. (1994b).

The sum on the right converges absolutely under our assumption. The integral also

absolutely convergent for f ∈ Lp(R), 1 ≤ p ≤,∞ which will follow from the fact that

Pm(x, y) is bounded by a convulsion kernel H. For f ∈ L1(Ω), x in the Lebesgue set of f ,

the wavelet expansion of f to f(x) at x, i.e.,

lim
m→∞

Pmf(x) =
∑

m→∞

∑

k

cj,kφj,k(x) = f(x),

where cj,k is the wavelet coefficients, in particular, which is determined by the the Lebesgue

set of f . Furthermore, if f is uniformly continuous, then the convergence is uniform.

4.5 Summary

It is shown that there is compactly supported function for normal multiresolution approx-

imation such that the scaling function and wavelet function (based on the hypothesis of

interpolating wavelet basis function) on real line. Clearly, the basis function defines a

triangular function. Moreover, pointwise convergent property of the function f in Lp(R),

1 ≤ p ≤ ∞ is proved.
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Hence, with the assumption of uniform cone condition of a domain Ω ⊂ R
d, d ≥ 1,

function decomposition into normal wavelet is developed in the next chapter. The principle

component of this scheme is that there is a 1–unisolvent set Xj = {xj1, · · · , xjn} for each

resolution level j, as the data sets are on the boundary ∂Ω of the domain Ω.
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Chapter 5

Normal Wavelets in a Bounded

Domain

5.1 Interpolating Functions

The theory of wavelets and multiresolution analysis is usually developed on R
d while

applications of wavelets to image processing and numerical methods for partial differential

equations require multiresolution analysis on domains or manifolds on R
d. Many real

life problems require algorithms adapted to irregular sampled data while first generation

wavelets imply a regular sampling of the data. Moreover, Diagonalization of differential

forms, analysis on curves and surfaces, and weighted approximation require a basis adapted

to weighted measures. However, first generation wavelets typically provide bases only for

spaces with translation invariant (Haar–Lebesgue) measures defined on R
d. Hence, a

proper substitute is needed.

A generalization of first generation wavelets while preserving the their properties is

known as second generation wavelets. In this setting our concern is normal multireso-

lution approximation and its basis functions. In the previous chapter we have shown that

multiquadric (in odd dimensional Euclidean apace) functions may be an ideal choice for

interpolating wavelet basis functions with polynomial reproduction property. The normal

multiresolution approximation of a function f (with some smoothness properties) have
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interpolating basis functions, known as multiquadric and inverse multiquadric functions.

That is, former property could be generalized to later. This is the core of our approach to

find basis functions for normal multiresolution approximation.

5.2 Construction of Normal Subdivision Scheme

Let Ω be a compact subset of Rd, and let f ∈ C(Ω) be a function decomposed by normal

multiresolution approximation. This scheme produces one irregular point set as opposed to

the traditional wavelet transform. In the irregular case, the subdivision scheme becomes

both spatially variant and non stationary. Smoothness results are not straightforward;

because the subdivision is spatially variant. The Fourier transform can no longer be used

because it is non stationary, even spectral analysis cannot help.

Much of this effort hinges on the idea of multiresolution analysis as a device to construct

wavelet approximation likewise traditional wavelet transform. In this setup, there is a

nested sequence of spaces

S0 ⊂ S1 ⊂ S2 ⊂ · · · ,

from which a given function is approximated. The hypothesis of this work is that the

wavelet is simply a finer scale scaling function at odd–locations.

Normal multiresolution induces a parameterizations of a curve f as depicted in Figure

2.3 in Chapter 2. Analytically this parameterizations is as follows: we define at every

level j, sj : [0, 1] → R
d to be piecewise affine map with breakpoints at the tj,k = 2−jk,

k = 0, 1, · · · , 2j and for which f(sj(tj,k)) = vj,k, i.e., sj(tj,k) = sj,k.

Definition 5.2.1 If the node points on fj,k approach each other when j → ∞ then sj,k(t)

converges absolutely to a function s(t), i.e., the limit function,

lim
j→∞

sup
k

|fj,k − sj,k| = 0.

The parameterization of a function f induced by the normal multiresolution maps t ∈
[0, 1] to f(s(t)); we shall call this the normal parameterization of a function f . The
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regularity of normal parameterizations is related to the decay of wavelet coefficients which

directly determines the approximation quality. It is easy to see the above scheme defines

a polygonal boundary ∂Ω in Ω ⊆ R
d and polygon can be decomposed as triangles at

subsequent resolution levels. Hence, let △NS be a normal subdivision triangulation of a

subset Ω ⊆ R
d with polygonal boundary ∂Ω.

5.2.1 Polygonal Domain

In this section we introduce some notation that will be needed later. Then we review some

basis properties of triangulation.

For a positive integer n, Rn denote the n–dimensional Euclidean space with inner product

given by

x.y := x1y1 + · · ·+ xnyn for x = (x1, · · · , xn) and y = (y1, · · · , yn) ∈ R
n.

Consequently, the norm of a vector x ∈ R
n is given by |x| := (x.x)1/2.

An element of Nn
0 is called multi–index. The length of a multi–index α = (α1, · · · , αn) ∈

N
n
0 is given by |α| := α1+ · · ·+αn. For α = (α1, · · · , αn) ∈ N

n
0 and x = (x1, · · · , xn) ∈ R

n,

define

xα := (xα1

1 , · · · , xαnn ) ∈ R
n.

The function x 7→ xα, (x ∈ R
n), is called a monomial and its (total) degree is |α|. A

polynomial is a linear combination of monomials. The degree of a polynomial q is defined

to be deg q := max{|α| : cα 6= 0}. For an integer k ≥ 0, we use Πk to denote linear space

of all polynomials of degree at most k.

For vectors y = (y1, · · · , yn) ∈ R
n, we use Dy to denote the differential operator given

by

Dyf(x) := lim
t→0

f(x+ ty)− f(x)

t
, x ∈ R

n.

Let e1, · · · , en be the unit coordinate vectors in R
n. For j = 1, · · ·n, we write Dj for Dxj .

For multi–index α = (α1, · · · , αn), Dα stands for differential operator Dα1

1 · · ·Dαn
n .

Maximal operators play an important role in interpolation and differentiation. A paradigm
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is that so called sharp maximal functions of Calderón and Scott, given by

f ♯α := sup
Q∋x

1

|Q|1+α/d
∫

Q

|f − fQ|, 0 < α < 1, (5.1)

where fQ := |Q|−1
∫
Q
f is the average of f over the cube Q, and Q ranges over all x. When

α > 0, f ♯α is related to classical differentiation; for instance it is well known that

f ∈ Lipα(R
n) ⇔ f ♯α ∈ L∞(Rn), 0 < α < 1,

where Lipα is the Lipschitz space of smoothness α.

The extension of (5.1) to functions of higher smoothness α ≥ 1 is given by replacing

the average fQ by the best polynomial approximation from Πα, the space of polynomial

degree at most of α. Now, let Ω be a (Lebesgue) measurable subset of Rn. Suppose f is

a (real valued) measurable function on Ω. For 1 ≤ p <∞, let

‖f‖p,Ω :=

(∫

Ω

|f(x)|pdx
)1/p

.

For p = ∞, let ‖f‖∞,Ωbe the essential supremum of |f | on Ω. By Lp(Ω) (1 ≤ p ≤ ∞) we

denote the linear space of all functions f on Ω such that ‖f‖p,Ω <∞. Equipped with the

norm ‖ · ‖p,Ω, Lp(Ω) becomes Banach space.

Let T be a finite collection of triangles in R
n. The intersection of any two triangles

in T is empty, or a common vertex, or a common edge of them. Let Ω be the union of

the triangles in T . Then, Ω is a polygonal domain in R
n and T is a triangulation of

Ω. The domain Ω could be bounded or unbounded. But, Ω is always assumed to be a

Lipschitz–graph domain.

5.3 Interpolating Basis Functions

Radial basis functions are well–known and useful tool for functional approximation in one

or more dimensions. The general form of approximation is always a linear combination

(finite or infinite) of number of shifts of a single function, the radial basis function. In

more than one dimension, this function is made rotationally invariant by composing a

univariate function, usually called ϕ, with the Euclidean norm. In one dimension such

approximation usually simplifies to univariate polynomial splines.
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This section present compactly supported quasi–interpolating basis function which in-

terpolates the given equally spaced centers. This function is scale invariant, i.e., the basis

function is the generating function of the scale invariant space. Moreover, the functions is

scale invariant, i.e., a single function is used over different resolution level.

In as much as multiquadric functions interpolations are used mainly for the purpose of

multiresolution approximation in applications, the assumption that the data lie at the

vertices of an infinite regular grid gives rise to an interesting special case. The Lp(R
d),

d > 0, approximation order is at least µ for approximants from an h–dependent space

S = Sh of the approximants with centers hZd, if

distLp(Rd)(f,S) := inf
g∈S

‖f − g‖p = O(hµ), for all f,

from a given space of approximants. The h–dependent of S comes only from the fact the

shifts of the radial basis function on scaled integer grid hZd.

The interpolants are defined on equally spaced grids as;

Z
d = {(k1, k2, · · · , kd) : ki ∈ Z, i = 1, 2, · · · , d},

or hZd is that they are periodic and boundary–free. The space spanned by shifts of basis

function, call it ψ, namely by

ψ(· − k), k ∈ Z
d, d > 0,

are called shift–invariant because of any f in such space, it shifts f(· − k), k ∈ Z
d is an

element of the space.

The goal of interpolations on grids is to find interpolants which in our case; the construc-

tion admits in particular all pointwise absolutely convergent sums (with real coefficients

dk), and more precisely, everywhere on the Lebesgue set of function being expanded, have

the form
∑

k∈Zd

dkψ(x− k), x ∈ R
d,

where f : C(Rd) → R is the function we wish to interpolate and ψ has the following

expansion

ψ(x) =
∑

µ∈Zd

cµϕ(‖x− µ‖), x ∈ R
d,
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which is finite.

All sums are being assumed at present to be absolutely convergent in a compact set K,

ϕ being multiquadric and {cµ}µ∈Zd be suitable f–independent that is of compact support

with respect to µ. So far, we have written an interpolant based on Z
d translate of ϕ(‖ · ‖)

but to get convergence on the whole underlying space of Rd of the interpolant f , it is

necessary to base the interpolant on hZd, h being positive and becoming small. In fact,

it is desirable in the latter case remain with exactly same ψ, but then we must scale the

argument of the ψ as follows:

∑

k∈Zd

hdj,kψ(x/h− k), x ∈ R
d,

where hdj,k is scaled coefficient sequence at the resolution level j ∈ hZd. In the language

of shift–invariant spaces and multiresolution analysis is a stationary scaling, since for all

h the same function ψ is used which is scaled by h−1 inside its argument.

5.3.1 Compactly Supported Scaling Function

In this section, we wish to develop more general approach employing the concepts of

traditional wavelets and radial basis functions and employ shift–invariant spaces of ap-

proximation for our interpolating wavelet transforms. To start with, we wish to find a

function φ ∈ L1(R) which satisfies the following decay condition

|φ̂(ξ)| ≤ C(1 + |ξ|)−3−ε,

and the partition of unity conditions, where C is positive generic constant and ε > 0. φ̂

denotes the Fourier transform. Since, we demand the interpolating basis function must

have the property that φ̂(0) 6= 0. Fourier transform φ̂ is continuous and well defined.

Without lose of generality we assume that φ̂(0) = 1. Hence, the interpolating function is

well defined and in a shift–invariant space.

The function f ∈ C(Ω) can be interpolated with multiquadric function ϕ(r) =
√
r2 + c2,

where r = ‖x‖ is the Euclidean norm and c is a constant. Define

φ(t) =
1

2
ϕ

′′

(t), for all t ∈ R
d. (5.2)
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The function φ ∈ C∞
0 is the quasi–interpolating basis function which interpolates the func-

tion f j associated with the compact set Ωj which satisfy the properties of multiresolution

defined below in Section 5.5. The interpolating sequence {φk : k ≥ 0} ⊂ C∞
0 is now

defined as

φk = δ0,k, for all k ∈ Z
d.

Then we assume that the function is in the generalized smoothness of function spaces.

Hence, the following section describe the sequence of functions admissible in the sense of

generalized smooth function spaces.

5.3.2 Admissible Sequence of Functions

We shall adopt the following general notation: N denotes the set of all natural numbers,

N0 = N ∪ {0}, Rn, n ∈ N, denotes the n–dimensional real Euclidean space and R = R
1.

We use the equivalence ∼ in

ak ∼ bk or ϕ(r) ∼ ψ(r),

always to mean that there are two positive numbers c1 and c2 such that

c1ak ≤ c2bk or c1ϕ(x) ≤ ψ(x) ≤ c2ϕ(x),

for all admitted values of the discrete variable k or the continuous variable x, where

(ak)k, (bk)k are non–negative sequences and ϕ, ψ are non–negative functions. If a ∈ R

then a+ := max(a, 0). Here we consider n–dimensional Euclidean space and real line

interchangeably then we use the notation R invariably. We explain the class of sequences

we shall be interested in and some related basic results.

A sequence γ = (γj)j∈N0
of positive real numbers is said to be admissible if there exist

two positive constants d0 and d1 such that

d0γj ≤ γj+1 ≤ d1γj, j ∈ N0. (5.3)

For an admissible sequence γ = (γj)j∈N0
, let

γ
j
:= inf

k≥0

γj+k
γk

and γj := sup
k≥0

γj+k
γk

, j ∈ N0. (5.4)
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Clearly, γ
j
γk ≤ γj+k ≤ γjγk for any j, k ∈ N0. In particular, γ

1
and γ1 are the best

possible constants d0 and d1 in (5.3) respectively. Then the lower and upper Boyd indices

of the sequence γ are defined respectively by

s(γ) := lim
j→∞

log γ
j

j
and s(γ) := lim

j→∞

log γj
j

. (5.5)

The above definition is well posed: the sequence (log γj)j∈N is sub–additive and hence the

right–hand side limit in (5.5) exists, it is finite (since γ is an admissible sequence) and it

coincides with infj>0 log γj/j. The corresponding assertions for the lower counterpart s(γ)

can be read off observing that log γ
j
= − log(γ−1

j ) .

The Boyd index s(γ) of an admissible sequence γ describes the asymptotic behavior of

the γj’s and provides more information than simply γ1 and, what is more, is stable under

the equivalence of sequences: if γ ∼ τ , then s(γ) = s(τ) as one readily verifies. The same

applies to the lower counterpart. Observe also that for each ǫ > 0 there are two positive

constants c1 = c1(ǫ) and c2 = c2(ǫ) such that

c12
(s(γ)−ǫ)j ≤ γ

j
≤ γj ≤ c22

(s(γ)−ǫ)j, j ∈ N0. (5.6)

Let N = (Nj)j∈N0
be an admissible sequence with N1 > 1 (recall (5.4)). In particular

N is a so–called strongly increasing sequence which guarantees the existence of a number

k0 ∈ N0 such that

Nk ≥ 2Nj, for any k, j such that k ≥ j + k0. (5.7)

It should be noted that the sequence N = (Nj)j∈N0
plays the same role as the sequence

(2j)j∈N0
in the classical construction of function spaces, such as Besov spaces, Bs

p,q.

For a fixed sequence N = (Nj)j∈N0
, as above, we define the associated covering ΩN

j =

(ΩN
j )j∈N0

of R by

ΩN
j = {x ∈ R : |x| ≤ Nj+k0}, j = 0, · · · , k0 − 1,

and

ΩN
j = {x ∈ R : Nj−k0 ≤ |x| ≤ Nj+k0}, j ≥ k0,

with k0 according to (5.7).
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Definition 5.3.1 For a fixed increasing sequence N = (Nj)j∈N0
with N1 > 1 and for the

associated compact set ΩN = (ΩN
j )j∈N0

of R, a system φN = (φNj )j∈N0
will be called a

(generalized) partition of unity subordinated to ΩN if :

1. φNj ∈ C∞
0 and φNj (x) ≥ 0 if x ∈ R for any j ∈ N0;

2. supp {φNj } ⊂ ΩN
j for any j ∈ N0;

3. for any α ∈ N
n
0 there exist a constant cα such that for any j ∈ N0

|Dαφ(x)| ≤ cα(1 + |x|)−R, R ≥ 1, for any x ∈ R;

4. there exist a constant cφ such that

0 <
∑

k∈Z

φNj (x) = cφ <∞, for any x ∈ R.

Without lose of generality we assume that cφ = 1.

Example We consider example of an admissible sequences. Let φ : (0, 1] → R be a slowly

varying function. Then, for each s ∈ R the sequence γ = (2sjφ(2−j))j∈N0
is an admissible

sequence. Also, here we have s(γ) = s(γ) = s.

Example The case γ = (2sjψ(2−j))j∈N0
, where ψ is an admissible function in the sense

of Triebel (1999) (i.e., a positive monotone function defined on (0, 1] such that ψ(2−2j) ∼

ψ(2−j), j ∈ N0), can be regarded as a special case of the above example.

Remark 5.3.1 The examples above have in common the fact that their upper and lower

Boyd indices coincide. However, this is not in the general case, i.e., an admissible sequence

has not necessarily a fixed main order.

5.4 Multilevel Triangulation

In the previous section we have shown that a function or a surface can be represented

by refinement of △j+1 of △j with some subdivision scheme. The subscript j denotes the
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resolution level. Subdivision schemes are used as prediction step in construction of second

generation wavelets. Usually the second generation wavelets are considered as interpolating

wavelet transform. Hence, there is an interpolating function known as scaling function and

also the wavelet function under some mild assumption.

These △ can be considered as scaling functions and, these scaling functions are con-

structed with translation of one compactly supported interpolating function as the linear

combination of multiquadric function in scale invariant space. This is the case with nor-

mal multiresolution scheme. This normal multiresolution subdivision scheme yields nested

sequences of

△NS
0 ⊂ △NS

1 ⊂ △NS
2 ⊂ · · · ,

that are regular in the sense of definition stated above. In this scheme, we assume that

the regular parameterization is used then the mesh size is equal at each resolution level.

A set F ⊂ R
d is said to be a compact polygonal domain if F can be represented as the

union of a finite set T0 of closed triangles with disjoint interiors: F =
⋃

△∈T0
△. Weak

locally regular, locally regular, etc. triangulations T =
⋃∞
m≥0 Tm of such domain F ⊂ R

d

are defined similarly as when F = R
d. The only essential distinctions are that the levels

(Tm) now are consecutive refinements of the initial coarse level T0 and, if a vertex v ∈ Vm
is on the boundary, we should include in Vm as many copies of v as is its multiplicity.

Remark 5.4.1 It is a key observation that the collection of all regular sequence of trian-

gulations with given (fixed) parameters is invariant under affine transforms.

Affine transform angle condition: There exists a constant β = β(T ), 0 < β ≤ π/3,

such that if △0 ∈ Tm, m ∈ Z and A : Rd → R
d is an affine transform that maps △0

one–to–one onto an equilateral reference triangle, then for every △ ∈ Tm which has at

least one common vertex with △0, then we have

min angle(A(△)) ≥ β, (5.8)

where A(△) is the image of △ by the affine transform A. In sequel, the following nota-

tion is used: for a given triangulation Tm, let σm,k denotes the set of all k–dimensional

subsimplices of simplices in Tm, and put Sm,k =
⋃{△ : △ ∈ σm,k} and, for a given
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△ ∈ σm,k,

△∗ := S△
m,k =

⋃
{△1 : △1 ∈ σm,k,△1 6= △}.

Hence the following lemma.

Lemma 5.4.1 Let k > 0 be an integer. Suppose that τ ∈ △∗ is a triangle in R
d, θ is the

minimum of the angle of τ . Then we have

C1(2
−j)d/p−1‖f‖∞,τ ≤ ‖f‖p,τ ≤ C2(2

−j)d/p−1‖f‖∞,τ , for allf ∈ Πk|τ 1 ≤ p ≤ ∞,

(5.9)

where C1 and C2 are two positive constants depending only on k and θ.

Proof : Let T be a triangle or some arbitrary partition in R
d represented by some poly-

nomial π ∈ Πk|T , then Πk|T is finite dimensional space. Since any two norms on finite

dimensional space are equivalent, there exist positive constants A and B such that

A‖g‖∞,τ ≤ ‖g‖p,τ ≤ B‖g‖∞,τ , for all g ∈ Πk|τ 1 ≤ p ≤ ∞.

Hence the result.

5.4.1 Triangulation of a Function

The construction of a multiresolution analysis over a triangulation is closely related to the

nested spline spaces. Since by remark (4.3.2) in Chapter 4, we know that each function φ

is a triangular function, then we consider the functions define triangular sequence or the

functions represent the triangular sequence.

Definition 5.4.1 Let F be a compact subset of Rd defines a finite set T of d–dimensional

(non degenerate) simplices is called a triangulation of F if the following conditions hold.

A1. For each pair △i,△i+1 ∈ T , △i 6= △i+1, for some i ∈ N0 the intersection △i ∩△i+1

is either empty or a common face of lower dimension.

A2. Every vertex of simplex △ ∈ T is in F .
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A3. F ⊂ ⋃△∈T △.

For a triangulation T , let δ = max△∈T diam(△). When considering a sequence {Tj}∞j=0 =

{Tj} of triangulations, we denote by δj the diameter of the triangulation Tj . In the sequel,

we deal with sequences {Tj} of triangulations satisfying the following conditions:

B1. For each j ≥ 0, Tj+1 is a refinement of Tj , i.e., for each △ ∈ Tj+1 there is △̃ ∈ Tj
such that △ ⊂ △̃.

B2. δj → 0 as j → ∞.

B3. For j ≥ 0, if v is a vertex in some △ ∈ Tj, then v is a vertex in some △ ∈ Tj+1.

For a simplex △, we denote the set of vertices of △ by V (△); for v ∈ V (△), let Hv be

the (n − 1)–dimensional hyperplane passing through the vertices of △ other than that v

and we put

ρ(△) = min
v∈V (△)

dist(v,Hv) (5.10)

Now, consider admissible sequence of triangulations, recall (5.7).

Definition 5.4.2 Let {Tj} be a sequence of triangulations satisfying B1. Then, {Tj} is

an admissible sequence of triangulations if the following conditions hold:

T1. There is a constant c2 > 0, independent of j, such that,

c−1
2 2−js ≤ δj ≤ c22

−js, s ∈ R.

T2. There are constants 0 < c3 < c4 < 1 such that, for all j ≥ 0,

c3δj ≤ δj+1 ≤ c4δj,

where δj is the diameter of the triangulation Tj.

T3. There is a constant c5 > 0, independent of j, such that, for all △ ∈ Tj,

ρ(△) ≥ c5diam(△),

where ρ(△) is defined by (5.10).

78



T4. There exist constants a > 0 and b > 0, independent of j, such that if x ∈ △Tj,
y ∈ △′Tj and |x−y| ≤ aδj, then there is a point z ∈ △∩△′

such that |z−x| ≤ b|x−y|
and |z − y| ≤ b|x− y|.

Note that T1 implies that δj/c2 ≤ diam(△) ≤ δj for △ ∈ Tj, so from T3 one obtains

ρ(△) ≥ c5
c2
δj, for △ ∈ Tj .

Condition T3 means that the simplices are not too flat, while condition T4 can be inter-

preted as requiring that the spaces between simplices are not too flat. In case of triangu-

lations of general closed sets, condition T4 must be included in the assumptions.

Let ξ be a vertex of a simplex △, and let φξ be the interpolating function which is

equal to 1 at ξ and equal to 0 at the other vertices of △. It should be clear that

max
ξ∈V (△)

|∇φξ| = 1/ρ(△), (5.11)

where |∇φξ| denotes the gradient of φξ.

5.4.2 Basis Functions : The General Setting

Let T =
⋃
m∈Z Tm be a admissible sequence of triangulation. For m ∈ Z, and k ≥ 1, we

denote by Skm = Sk(Tm) the set of all polynomial functions of degree < k over Tm; i.e.,
s ∈ Skm if and only if s =

∑
△∈Tm

1△ · P△, where 1△ is the characteristic functions of △
and P△ ∈ Πk.

We assume that for each m ∈ Z there is a subspace Sm of Skm and a family Φm = {ϕθ :
θ ∈ Θm} ⊂ Sm of basis functions satisfying the following conditions:

1. Πk ⊂ Sm for some 1 ≤ k̃ ≤ k (k̃ independent of m).

2. Sm ⊂ Sm+1 (m ∈ Z).

3. For any s ∈ Sm there exist a unique sequence of real coefficients a(s) = (aθ(s))θ∈Θm

such that

s =
∑

θ∈Θm

aθ(s)ϕθ.

(Thus, Φm is a basis for Sm and (aθ(·))θ∈Θm are dual functionals. )
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4. For each θ ∈ Θm there is a vertex v = vθ ∈ Vm such that

suppϕθ ⊂ △∗ := Eθ, (5.12)

‖ϕθ‖L∞(Rd) = ‖ϕθ‖L∞(Eθ) ≤M1, (5.13)

|aθ(s)| ≤M2‖s‖L∞(Eθ), (5.14)

where M1, and M2 are positive constants, all independent of θ and m.

We denote S = Sm∈Z, Φ :=
⋃
m∈Z Φm and Θ :=

⋃
m∈Z Θm. We shall call S is spline

multiresolution over T with family of basis function Φ.

A simple example of spline multiresolution is the sequence (Sm)m∈Z of all continuous

piecewise linear functions (r = 0, k = 2) on the levels (Tm)m∈Z of a given regular-

triangulation T of Rd. A basis for each space Sm is given by the set Φm of the Courant

elements ϕθ supported on the cells θ of Tm (θ is the union of all triangles of Tm attached to

a vertex, say vθ). The function ϕθ takes the value 1 at vθ and the value 0 at all other ver-

tices. Box splines with the corresponding ladder of spline spaces provide another example

of a spline multiresolution. Concrete constructions of infinitely differentiable basis func-

tions associated with spline multiresolution over regular triangulations will be discussed

in next section.

Note that Θ and Θm (m ∈ Z) above are simply index sets, in the case of Courant

elements, can be identified as sets of cells (supports of basis functions). In general, several

basis functions of Φm may have the same support. However, the supports of only constant

of them may overlap.

It follows from the above conditions that each basis Φm is Lq-stable for all 0 < q ≤ ∞,

i.e., if g :=
∑

θ∈Θm
bθϕθ, where {bθ}θ∈Θm is an arbitrary sequence of real numbers, then

‖g‖q ≈ (
∑

θ∈Θm

‖bθϕθ‖qq)1/q

with constants of equivalence independent of m and g.
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5.4.3 Quasi–interpolant

For 0 < q ≤ ∞ and an arbitrary triangle △, we let P△,q : Lq(△) → Πk be a projector such

that

‖f − P△,q‖ ≤ cEk(f,△)q for f ∈ Lq(△). (5.15)

Note that P△,q can be realized as a linear operator if q ≥ 1. If 0 < q < 1 we would be able

to construct non–zero bounded linear functional on Lq.

Define a linear operator Qm : S(Tm) → Sm as follows: for each θ ∈ Θm let λθ : S(Tm) →
R be a linear functional such that

λθ(s|Eθ) = aθ(s), s ∈ Sm, and

|λθ(f)| ≤M2‖f‖L∞(Eθ), f ∈ Sk(Tm)|Eθ .

Such linear functional always exists by Hahn–Banach theorem. We set

Qm(s) :=
∑

θ∈Θm

λθ(s|Eθ)ϕθ, s ∈ Sk(Tm)|Eθ .

Clearly Qm(s) = s if s ∈ Sm, and thus Qm is a linear projector of S(Tm) onto Sm.
Moreover, Qm is a bounded projector. For any s ∈ S(Tm), 0 < q ≤ ∞, and △ ∈ Tm

‖Qm(s)‖Lq(△) ≤ c‖s‖Lq(Ωℓ△),

with a constant c independent of m, △, and s.

We denote S−∞ :=
⋂
m∈Z Sm. Note that if s ∈ S−∞, s 6= constant , and |{x ∈ R

d :

|s(x)| > t}| < ∞ for some t > 0, then s ≡ 0 and, in particular, if s ∈ S−∞ ∩ Lp (p < ∞),

then s ≡ 0.

Triangular Function. Clearly, the basis function φ defines a triangular function on

compact set Fj for each resolution level j = 0, 1, 2, · · · . Denote by Uj be the set of all

vertices of the triangulation Tj , and for ξ ∈ Uj , let sj(ξ) be the family of simplices from

Tj having ξ as one of the vertices, and let Fj(ξ) be the union of these simplices, i.e., let

sj(ξ) = {△ ∈ Tj : ξ ∈ V (△)}, Fj(ξ) =
⋃

△∈sj(ξ)

△. (5.16)
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For ξ ∈ Uj, let φj,ξ be the unique function defined on Fj =
⋃

△∈Tj
△ such that

φj,ξ = δξ,η, for all η ∈ Uj .

V0 = U0, Vi = Ui\Ui−1, for i > 0, (5.17)

and for latter convenience, let V := ∪∞
i=0Vi. Note that the support of φj,ξ is Fj(ξ). Con-

dition T3 and T4 guarantee that the function φj,ξ satisfy a Lipschitz constant depending

only on δj. We introduce one more condition on a sequence {Tj} of triangulation of a

compact set F . Recall that Uj denote the set of vertices of {Tj} and let

T5. there is a constant c6 such that for all j ≥ 0, ξ ∈ Uj and x, y ∈ Fj, we have

|φj,ξ(x)− φj,ξ(y)| ≤ c6|x− y|/δj.

In the sequel, functions φj,ξ are extended to Lipschitz function on R
d, where d > 0 is odd,

since we need the polynomial reproduction property of the basis function expansion.

Proposition 5.4.1 Let {Tj} be a an admissible sequence of triangulation of a compact

set F ⊂ R
d. Then there are constants c7 and r, independent of j, such that each function

φj,ξ can be extended to a function φ̃j,ξ on R
d, satisfying

suppφ̃j,ξ ≤ B(ξ, rδj), ‖φ̃j,ξ‖∞ ≤ 1,

and

|φ̃j,ξ(x)− φ̃j,ξ(y)| ≤ c7|x− y|/δj, for x, y ∈ R
d.

Proof : Let γ > 0, and put E = {x : d(x, Fj(ξ)) ≥ γδj}. Extend the domain of φj,ξ to

include E by defining it as zero there. Then, if x ∈ Fj(ξ) and y ∈ E, we have

φj,ξ(x)− φj,ξ(y) ≤ 1 ≤ |x− y|/(γδj).

Clearly, φ is a Lipschitz function on Fj ∪ E. The Whitney extension theorem yields an

extension φ̃ of φ to R
n which has the desired properties.

The extension theorem gives, in fact, that 0 ≤ φ̃j,ξ ≤ 1. Then we have the following lemma

.
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Lemma 5.4.2 Let F be a compact subset of Rd, and {Tj} be a an admissible sequence

of triangulation of F satisfying the above triangulation conditions. For ξ ∈ Uj, φ̃j,ξ is the

unique function on Fj =
⋃

△∗∈Tj
△∗ such that φ̃j,ξ = δξ,η for all η ∈ Uj on each simplex

△∗ ∈ Tj. Then there is a unique function s ∈ Sj such that

Sj = {s : s =
∑

ξ∈Uj

aξφ̃j,ξ, aξ ∈ R}, (5.18)

where Sj is the space of functions generated by {φ̃j,ξ : ξ ∈ Uj}, whose restriction on Fj are

linear on each △ ∈ Tj. Then, for each ξ ∈ Uj,

supp φ̃ξ ⊂ △∗ =: Eξ,

‖φ̃ξ‖L∞(Rd) = ‖φ̃ξ‖L∞(Eξ) ≤M1,

|aξ| ≤M2‖s‖L∞(Eξ), s ∈ Sk(Tj),

where M1, M2 are positive constants depending only on k, r, δi and j. Moreover, for each

△ ∈ Tj,
‖s|△‖L∞(△∗) ≤ cδj max

ξ∈Uj
|aξ|, (5.19)

where c is a constant depending only on j and Uj.

Proof : Please see Lemma 2.4 of Davydov and Petrushev (2003).

Further, (5.19) implies that ‖φ̃j,ξ‖ ≤ cδj and supp φ̃j,ξ is contained in △ whenever ξ ∈ Uj.
Also, by Markov’s inequality,

|aξ| ≤ Cδj‖s|△∗‖L∞(△∗). (5.20)

Thus, we showed that Φj = {φ̃ξ : ξ ∈ Uj} satisfies all the requirements of Section 5.4.2

with Sj = Sk(Tj) and k̃ = k. Obviously, Πk ⊂ Sj.

Consider the space Sj consists of the restriction of F of functions which are defined and

continuous on Fj, and linear on each △ ∈ Tj. As

φ̃j,ξ =
∑

η∈Fj(ξ)∩Uj+1

φ̃j,ξ(η)φ̃j+1,ξ,
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then we have Sj ⊂ Sj+1. The linear functional λη : Sk(Tj) ∩ L∞(Eη) → R, η ∈ Uj , with
properties

λη(s|Eη) = η(s), s ∈ Sk(Tj);

|λη(f)| ≤M2‖f‖L∞(Eη), f ∈ Sk(Tj) ∩ L∞(Eη);

needed in the definition of Qj, can be defined in a construction manner as:

λη(f) =





f(η) for η ∈ U0

f(η)− Sk−1f(η) for η ∈ Uj j > 0,

where

Qjf =
∑

θ∈K

aθ(f)φ̃η, K is compact subset of η.

The above lemma gives us that the linear operators Qj, j = 0, 1, 2, · · · , with the following

properties:

Proposition 5.4.2 Suppose f ∈ C(F ), then we have,

Qjf =
∑

ξ∈Uj

cξ(f)φ̃ξ, j = 0, 1, 2, · · · ,

where cξ(f) is a bounded linear functional on a compact set K ⊂ R
d, d > 0 is odd. Qj

is a kind of nonorthogonal projection onto Πk ⊂ Sj, where Πk is a polynomial space with

degree less than or equal to k. In particular, Qjq = q, for q ∈ Πk, for all j = 0, 1, 2, · · · .

Proof : By the above Lemma 5.4.2 and the following discussions.

5.4.4 Sequence of Linear Operators

Our goal in this section is to employ families T = (Tj)j∈N of linear operators in construction

of wavelets. We assume that we have in hand a sequence of linear operators Tj , j ∈ N,

given by

Tjf =
∑

ξ∈Uj

cj,ξ(f)φj,ξ, j = 0, 1, 2, · · · , (5.21)

where cj,ξ(f) is a bounded linear functional on a compact set K ⊂ R
d, d > 0 is odd. It is

noted that the biorthogonal wavelets are typical candidates for the function φj,ξ for each

ξ ∈ Uj and for j = 0, 1, · · · , which satisfy the following properties:
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C1. supp φ ⊂ [−L,L]d, L ∈ N,

The integer translates of φ give rise to a linear operator T0 defined on f ∈ C(Ω), by

T0f :=
∑

ξ∈U0

cξ(f)φξ,

while scaling and translation yields a sequence T = (Tj)j∈N of operators given by

Tjf :=
∑

ξ∈Uj

cj,ξ(f)φj,ξ, j = 1, 2, · · · .

C2. We assume that the sequence (Tj)j∈N has the following properties: For some d > 0

Tjp = p p ∈ Πd.

C3. For every j, v ∈ N with j ≥ v

Tj Tv = Tv.

C4. φj ∈ C∞
0 .

C5. In addition, for each j ∈ N we will often needed the φj is the basis over a compact

subset of Ω; by this we mean that the family of functions

{φj : j ∈ Γj is not identically zero on Ω}

is linearly independent over Ω and the space spanned by the function φj is finite

dimensional.

All these assumption are standard and well understood because, these kind of operators

play a dominant role in the characterization of the approximation orders of shift–invariant

spaces and the construction of interpolating operators. For instance, (C2) is usually re-

lated to the approximation properties of the sequence (Tj)j∈N and holds if φ satisfies the

conditions of if ϕ(r) = (r2 + γ2)β/2 and d is odd, then there are finite set N ⊂ Z
d and real

coefficients {µk}k∈N such that T and φ defined as above satisfy

|φ(x)| = O(‖x‖−2n−1) as ‖x‖ → ∞,

and

Tp = p, for all p ∈ Πn, n ≤ d.
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The property (C5) is readily available with the interpolation function on a compact set

Ω. On the other hand, we would show that the rest of the assumptions are always satis-

fied within the framework of interpolating wavelet basis of multiquadric functions. Now

we have to show that the above interpolating functions described above posses sufficient

conditions for the assumptions C1 and C3 to hold.

5.5 Bounded Domain

In this section, construction of domains Ωj ⊂ R
d and that these domains Ωj form a

partition of Ωj , i.e., collection Cj of cells which satisfy the conditions of multiresolution.

Thus, for these domains, the construction of the multiresolution spaces Vj(Ω) and all the

ensuant properties of multiresolution are hold.

Assume that Ω is a bounded, simply connected domain (i.e. an open set) satisfying the

uniform cone condition. We recall that the uniform cone condition means that there is an

open cone K with vertex at the origin such that for each point x on the boundary of a

suitable translate and rotation K
′

of K has vertex x and K
′ ∩ B(x, r) ⊆ Ω for some ball

B(x, r) centered at x with radius r.

Let Ω ⊂ R
d be a compact set and let f ∈ Lq(Ω), 0 < q ≤ ∞ (f ∈ C if q = ∞) be

a function decomposed with normal multiresolution approximation with uniform param-

eterization. Then, for each j = 0, 1, · · · , (xj,k)k∈N0
be a strictly increasing sequence of

centers in Ω which define

Ωj = {2−jk : k ∈ Z
d,Ω ∩ 2−j(k + [−L,L]d) 6= ∅}

denote the lattice compact sets for which the support of φk = φ(2j · −k) intersect Ω.

To describe the construction of multiresolution on bounded domain similar to the de-

scription by Cohen et al. (2000). In that paper, they have constructed a ladder of space

Sj(Ω), j = 0, 1, · · · , which retains the important properties of multiresolution.

Since the support of φ is contained in the cube [−L,L]d, it is obvious that if 2−jk /∈ Ωj

then suppφ(2j · −k) ∩ Ω = ∅. Therefore, we need only to consider k, j’s with 2−jk ∈ Ωj,
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j ∈ N.

To simplify our notation, for each lattice point γ = 2−jk of Ωj, we write,φγ instead of

2jdφ(2j · −k). However, since a lattice point may belong to different Ωj’s we will always

correlate φγ with a specific dyadic level j which we make clear in all instances.

The construction of Sj(Ω), j = 0, 1, · · · , proceeds by partitioning Ωj into a family Cj of
disjoint subsets (cells) C of Ωj . In other words, each Cj consists of a collection of disjoint

(cells) C ∈ Cj such that
⋃
C∈Cj

C = Ωj.

Of course, not all bounded domains Ω will admit a multiresolution analysis Sj(Ω), j ∈ N.

The admissibility of Ω depends foremost on the properties of the cells C in Cj. We will

briefly recall the notation of Cohen et al. (2000) and describe the properties imposed on

the cells in Cohen et al. (2000) that guarantee the existence of Sj(Ω), j ∈ N.

We assume that each Cj can be partitioned into sub collections Cj(I, γ) where I ⊂
[1, · · · , d] and γ = (γl)l∈I , (γl)l∈I = (σi · σj)i,j∈I ⊂ {−1, 1}|I|, where (σi · σj)i,j∈I is dot

product in Euclidean space R
d, i.e.,

Cj =
⋃

I,γ

Cj(I, γ),

where

Cj(I, γ) ∩ Cj(I
′

, γ
′

) = ∅ for (I, γ) 6= (I
′

, γ
′

).

Moreover, each cell C ∈ Cj(I, γ) is of the form

C = k +D(k),

with k ∈ Ωj a lattice point (called the representer of C) and

D(k) ⊂ span{ei : i ∈ I}
⋂

2−jZd,

with ei , i = 1, · · · , d, the coordinate vectors in R
d.

For each cell C and its representer k, we define

G(C) := {k + 2−jTγα : α ∈ Z
d
+, 0 ≤ α ≤ N},

where for a sequence γ the transformation Tγ is defined on R
d by

Tγ

(
∑

i∈I

λiei

)
:=
∑

i∈I

γiλiei.
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In other words G(C) consists of a square array of (N +1)|I| lattice points emanating from

k and expanded in the direction defined by I and γ.

Also, for a set K = [k1, · · · , km] ⊂ [1, · · · , d] with k1 < k2 < · · · < km, and a point

x ∈ R
d, we define xK to be the point whose coordinates are those of x corresponding to

the indices of K, i.e., xK := (xk1 , · · · , xkm). If C ∈ Cj(I, γ) is a cell in Cj , we let Λ(C) be

the set of all α ∈ Λ for which αj = 0, j ∈ {1, · · · , d}\I.

Further assumptions have to be made on the cells that guarantee the nestedness of the

sequence Sj(Ω), j ∈ N. The following two conditions will ensure the nestedness of the

multiresolution approximation spaces.

M1. If C ∈ Cj(I, γ) and C ′ ∈ Cj+1(I
′

, γ
′

) satisfy

[C] ∩ C ′ 6= ∅,

then

I
′ ⊆ I. (5.22)

M2. If C ∈ Cj(I, γ) and C ′ ∈ Cj(I ′

, γ
′

) are two cells from Cj with C 6= C
′

and

[C, I] ∩ [C
′

, I
′

] 6= ∅,

then

I
′ ⊂ I, I

′ 6= I. (5.23)

M3. Finally, it will be important to ensure that all the basis functions have small support.

There exists a constant M such that

diam[C] ≤M2−js, C ∈ Cj , s ∈ R. (5.24)

5.5.1 Normal Interpolating Wavelet Basis in C(F )

Now, we describe quasi–interpolating wavelet basis in C(F ). For ξ ∈ Vi, let ψi,ξ := φ̃i,ξ; if

ξ ∈ Vi with i > 0, then put

△(ξ) = Ui−1 ∩
⋂

{△ : △ ∈ Ti−1, ξ ∈ △}.
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Let f ∈ C(F ), and suppose that f is decomposed with normal multiresolution approxima-

tion into regular sequence of triangles {Tj}j≥0 satisfying the properties B1 and B2. Then

the vertical offset coefficients are computed as follows:

ci,ξ(f) =





f(ξ) for ξ ∈ V0,

f(ξ)−∑η∈△(ξ) qξ,ηf(η) for ξ ∈ Vi with i > 0,
(5.25)

where ξ =
∑

η∈△(ξ) qξ,ηη.

Lemma 5.5.1 For each ξ and η ∈ △(ξ), qξ,η > 0 and
∑

η∈△(ξ) qξ,η = 1. The coefficients

ci,ξ(f) are chosen in such a way that

f(η) =

j∑

i=0

∑

ξ∈Vi

ci,ξ(f)ψi,ξ(η), for each η ∈ Ui, i ≥ 0. (5.26)

Proof : It can be easily proved by induction with respect to i.

As a consequence of Lemma 5.5.1 we state the following proposition.

Proposition 5.5.1 Let F be a compact set in R
d, d > 0 and let admissible sequence

of triangles {Tj}j≥0 satisfying the properties B1 and B2. Then the system of functions

{ψξ : ξ ∈ V} satisfying (5.25) is a basis in C(F ). More precisely, for each f ∈ C(F ), we

have

f =
∑

i∈N0

∑

ξ∈Vi

ci,ξ(f)ψi,ξ,

with the series uniformly convergent on F , and coefficients ci,ξ(f) are given by (5.25).

Proof : It is proved analogously as Proposition 3.3 in Ryll (1973) (where the case of a

cube is considered,), so the details of the proof of Proposition 5.5.1 could be obtained from

Ryll (1973).

Suppose that T is a admissible sequence of triangulation then, since by the property;

any two norms on a finite dimensional space are equivalent, we have that there are two

positive constants C1 and C2 such that

C1(2
−js)d/p−1 ≤ ‖φ̃j,ξ‖p ≤ C2(2

−js)d/p−1, s ∈ R for 1 ≤ p ≤ ∞. (5.27)

Then we have the following theorem.
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Theorem 5.5.1 For 1 ≤ p ≤ ∞, {(2js)1−d/pφ̃j,ξ : ξ ∈ Uj} forms a uniformly stable basis

for any f ∈ Lp(Ω) can be represented as:

f =
∑

ξ∈Uj

aξφ̃j,ξ, for some aξ ∈ R,

and

A(2js)1−d/p


∑

ξ∈Uj

|aξ|p



1/p

≤ ‖f‖p,Ω ≤ B(2js)1−d/p


∑

ξ∈Uj

|aξ|p



1/p

, s ∈ R,

where A and B are positive constants depend of φ̃ and d.

Proof : The results easily follows from 5.19, 5.20 and 5.27.

5.6 Multiresolution Analysis

The construction of multiresolution analysis over triangulation is closely related to the

construction of nested spline spaces. We are concerned with the interpolating basis con-

structed in previous section, and relate these basis functions to the fairly general definition

of multiresolution analysis following the work of Dahmen (1991, 1994a,b).

In the previous section we have constructed a nested sequence of subspaces

S0 ⊂ S1 ⊂ · · · and we introduced a linear operator Qj. In this section we look for

Banach space F such that sequence of subspaces {Sj}j∈N and the operators Qj form a

multiresolution analysis in the sense of following definition (Maes, and Bultheel, 2006).

Definition 5.6.1 A multiresolution analysis consists of

1. A Banach space F of functions defined on a compact set Ω ⊂ R
d, d > 0, with

associated norm ‖ · ‖F .

2. A nested sequence of closed subspaces S0 ⊂ Sj ⊂ · · · ⊂ F that are dense in F ,

∞⋃

j=0

Sj = F .
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3. A collection of local linear operator

Qj : F → Sj

with the properties

QjQj = Qj,

Qj(F) = Sj,

Qj+1Qj = Qj,

for every integers j ≥ 0.

With the projection operator Qj given, we can define the multiscale decomposition of

function f ∈ F as

f =
∑

j∈N0∩−1

∑

ξ∈Uj

dj,ξψj,ξ, (5.28)

where we have set for simplicity ψ−1 := φ0. We will refer to this function as wavelets,

despite the fact the fact they do not have a vanishing moment. Because the space Sm
are dense in F , every function f ∈ F has a representation (5.28) with n → ∞. The

decomposition (5.28) is particularly useful if the norm of f , in some Lp spaces or Sobolev

spaces, can be determined solely by examining the size of the coefficients cj,ξ(f). In

particular, the multiscale basis forms a strongly stable basis for some Lp spaces or Sobolev

spaces.

5.6.1 Banach Spaces with Sequence of Operators

A Banach space F , consider the C(F ) space, of functions defined on compact set F that

are continuous. The following propositions show that the operator Qj defined in (5.6.1)

admits multiresolution analysis over C(F ), in view of the Definition 5.6.1.

Proposition 5.6.1 For each j ≥ 0, we have

QjQj+1 = Qj.
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Proof : From the construction of Qj, we have

Qj+1f(ξ) = f(ξ), ∀ξ ∈ Vj+1.

Obviously, we have

QjQj+1f(ξ) = f(ξ), ∀ξ ∈ Vj ⊂ Vj+1,

and

Qjf(ξ) = f(ξ), ∀ξ ∈ Vj ⊂ Vj+1.

From the uniqueness of the interpolation property we have QjQj+1 = Qj .

There are still two properties required for a multiresolution analysis to be proved, namely

that the space
⋃∞
j=0 Sj is dense in C(F ) and that the linear operator is uniformly bounded.

Proposition 5.6.2 For every C(F ) and every ξ ∈ F the following inequality holds

|Qjf(ξ)| ≤ ‖f‖∞.

Proof : We have

|Qjf(ξ)| ≤ max |cξ(f)| ‖
∑

ξ∈F

φξ‖.

|Qjf(ξ)| ≤ ‖f‖∞

holds.

The following proposition is the consequence of construction our sequence of linear oper-

ators Qj, for all j = 0, 1, · · · ,

Proposition 5.6.3 For every f ∈ C(F )

∞⋃

j=0

Sj = C(F ).

Proof : In order to prove, we have to show that ‖f − Qjf‖ = 0 as j → ∞. For this,

we assume that the sequence of operator (Qj)j∈N that satisfy the conditions (C1)–(C4) of
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subsection 5.4.4 for some α > 0 (smoothness of function f ∈ Cα being interpolated). For

any j ∈ N, we define

Qj
L := {Q ∈ Q : (4L+ 2

√
d)−j−1 < ℓ(Q) < (4L+ 2

√
d)−j}.

Moreover, for every η ∈ R
d and j ∈ N, we denote by Qj

Lη the cube centered at η with side

length 4L+ 2
√
d, i.e.,

Qj
L(η) := η + [−

√
d− 2L,

√
d+ 2L]d2−j.

Let η ∈ R
d and assume that Q ∈ Qj, j ∈ N, contains η. It is easily seen that Q ⊂

η + [−
√
d,
√
d]d2−j. Since supp φ̃j,ξ ⊂ ([−l, L]d + k)2−j it follows that for every ζ ∈ Q,

|Qjf(ζ)| = |
∑

k∈Nd,η−k∈[−l,L]d

2jdcj,ξφ̃j,ξ(η)| (5.29)

.
1

Qj
L(η)

∫

QjL(η)

|f |.

Employing (C2) it follows from the (5.29) that for any cube Q ∈ Qj, j ∈ N, containing η,

|f −Qjf(η)| ≤ ‖f − fQjL(η)
+Qj(fQjL(η)

)−Qjf‖L∞(Q) (5.30)

≤ ‖f − fQjL(η)
‖L∞(Q) + ‖Qj(f − fQjL(η)

)‖L∞(Q)

≤ ‖f − fQjL(η)
‖L∞(Q) +

1

Qj
L(η)

∫

QjL(η)

|f − fQjL(η)
|

. ‖f − fQjL(η)
‖L∞(Q),

where fQjL(η)
:= |Qj

L(η)|−1
∫
QjL(η)

|f |. From (5.30) it is easily seen that for every continuous

function f ,

lim
j→∞

Qjf(x) = f(x).

Then we deduce the result.

Remark 5.6.1 The basis {ψξ : ξ ∈ V} should be regarded as an analogue on F of the

(R,D) interpolating wavelet with regard to Donoho (1992).
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5.7 Summary

It is shown that the sequence of operators Qj , for all j = 0, 1, · · · , admit the construction

of multiresolution analysis in view of the concepts given in Section 5.4.4 which are non–

orthogonal interpolating operators. The wavelets are defined as scale invariant compactly

supported function using linear combination of multiquadric functions.

We thus have a wavelet decomposition which exhibits the (cξ(f)) explicitly as measures of

error in approximation by Sj, and which reconstructs continuous functions. This setting

exactly fit into second generation setting, in particular, normal multiresolution wavelet

(Daubechies et al., 1999) which is the variant of lifting scheme (Sweldens, 1996, 1997).

This function can be decomposed with normal wavelet decomposition. Now, these func-

tions have to be characterized in Horizon class of functions, i.e., gray–scale images. Since,

by the property of embedding of C(F ) as Bα
p,q ⊂ Bα

p,∞ ⊂ Bα
p,1 ⊂ C(F ), for 1 ≤ p ≤ ∞,

1 ≤ p <∞ with 1/p < α <∞, the following chapter is devoted to the above decomposition

of functions in less smooth spaces such as Besov spaces.
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Chapter 6

Decomposition of Normal Wavelet

into Function Spaces

This chapter is concerned with defining normal wavelet basis functions which decompose a

function f in the framework of some known function spaces. In particular normal wavelet

decomposition of a function f is a quasi–interpolating decomposition into a certain func-

tion spaces, such as Sobolev spaces, Besov spaces etc. On the other hand it leads to

certain characterizations and some assertions concerning to Schauder bases for the func-

tion spaces. Specifically, isomorphism of spaces of function satisfying certain regularity

conditions with space of sequences of real numbers have proved to be useful tool, e.g., im-

age compression, etc. The idea of constructing such isomorphism is that the coefficients

of Faber–Schauder series gives a linear isomorphism of the spaces of Hölder functions on

[0, 1] with exponent α, 0 < α < 1, and the space of bounded sequences. Later, results of

this type have been obtained for spaces of functions satisfying the Hölder condition in the

Lp–norm and for Besov spaces, also for multivariate functions and for functions defined on

smooth compact manifolds, and for various spline basis, including the classical Franklin

system (Ciesielski, 1963, 1966; Ciesielski et al., 1993). Analogous characterizations are

also known for function spaces on R
n and wavelet bases (Frazier et al., 1991; Meyer, 1992;

Wojtaszczyk, 1997).

Let Ω be a bounded simply connected subset of Rn. Let f be a function in Lp(Ω),
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1 ≤ p < ∞ and f ∈ C(Ω) when p = ∞, is decomposed with normal multiresolution

approximation then we have a finite set of n–dimensional simplices △ covering Ω, such

that all vertices of △ are in ∂Ω, and if two different △ ∈ T intersect, where T is the

union of all △ in Ω, then their intersection is a common face of lower dimension. In the

sequel, we assume that the set Ω admits a admissible sequence of triangulations {Tj}∞j=0,

and denote the set of vertices of Tj by Uj. Define for ξ ∈ Uj, a function φj,ξ on the union

of all △ ∈ Tj as the piecewise linear function (i.e., piecewise polynomial of total degree

≤ n) which is 1 at ξ and 0 at the other vertices of Uj . Choosing at each level the functions

corresponding to the newly added vertices, we arrive to a system of functions {ψξ} which

can be regarded as an analogue on Ω of the Schauder basis. The system {ψξ} ordered in

a natural way is an interpolating basis in the space C(F ) of continuous functions f on Ω,

and we characterize Besov spaces Bα
p,q(Ω) on Ω with d/p < α < 1.

6.1 Images in Less Smooth Spaces

By remark 2.4.1 in Chapter 2, we have some sequence of interpolating functions fj(x)

are Horizon class and with minimally smooth boundary. Let’s introduce two notations.

Consider the following very simple horizon model. Suppose there is a function H(x), called

the horizon, defined on the interval [0, 1], and that the function is of the form of

f(x1, x2) = 1{x2≥H(x1)}.

This models a black–and–white images with a horizon, where the image is white above the

horizon and black below. We are interested in cases where the horizon is regular, and to

measure this we use Hölder conditions. For 0 < α ≤ 1 we say that H ∈ HOLDERα(C) if

|H(x)−H(x
′

)| ≤ C|x− x
′ |α, 0 ≤ x, x

′ ≤ 1.

For 1 < α ≤ 2 we say that H ∈ HOLDERα(C) if

|H ′

(x)−H
′

(x
′

)| ≤ C|x− x
′ |(α−1), 0 ≤ x, x

′ ≤ 1,

where H
′

is the derivative of H. For α = 1 (α = 2)membership in HOLDERα imposes a

Lipschitz condition on H (respectively on H
′

); for 0 < α ≤ 1 we are measuring a degree
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of fractional regularity of H, and for 1 < α ≤ 2 a degree of fractional regularity of H
′

. We

define a functional class HORIZα(C1, Cα),

HORIZα(C1, Cα) = {f : H ∈ HOLDERα(Cα) ∩HOLDER1(C1)}. (6.1)

This model is essentially the model of boundary fragments. Recall from Chapter 2, we

have that the normal multiresolution approximation and thus normal polylines are closely

related to certain well known fractal curves.

6.2 Interpolation on Fractal Curves

A special class of closed subsets Ω of Rn, referred to as sets preserving Markov’s inequality,

are considered. Typically, Ω may be a fractal such as the Cantor set or von Koch’s curve,

but F may also be a closed Lipschitz domain. We investigate interpolation to smooth

functions on Ω where the points of interpolation on ∂Ω.

It should be noted that even if the sets which we primarily have in mind in this dis-

sertation are fractals preserving Markov’s inequality, the results are true for any sets F

preserving Markov’s inequality. The point we want to stress, however, is that the methods

are applicable not only to certain sets with a nice geometry, like a Lipschitz domain or Rn

itself, but also to certain very irregular sets.

Let F ⊂ R
n be a closed, nonempty subset (usually preserving Markov’s inequality) and

B(x, r) is the closed n–dimensional ball with center x ∈ F and radius r ≤ 1. µ is a positive

nontrivial Borel measure finite on bounded sets with support of µ. Πk is the set of all

polynomials in n real variables of total degree at most k.

Recall the definition of the d–dimensional Hausdorff measure of E, md(E), where d is a

positive number and E ⊂ R
n.

md(E) = lim
ǫ↓0

mǫ
d(E),

where, for some positive constant α(d),

mǫ
d(E) = α(d) inf

{
Σj(diamEj)

d :
∞⋃

i

Ej ⊃ Ej, diamEj ≤ ǫ
}
.
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Here diamEj is the diameter of Ej. We choose α(d) so that md(E) coincides with the

n–dimensional outer Lebesgue measure of E. The d–dimensional Hausdorff measure is an

outer metric measure and the class of sets measurable md(E) contains the Borel sets in

R
n. The Hausdorff dimension of E, dim(E), is the infinimum of the set of d > 0 such

thatmd(E) = 0. It is easy to see that 0 ≤ dim(E) ≤ n.

Next, we define the concepts of d–measure and d–set. The set F is a d–set (0 < d ≤ n)

if there exists a µ with supp µ = F such that, for some positive constants cl = c1(F ) and

c2 = c2(F ),

c1r
d ≤ µ(B(x, r)) ≤ c2r

d for x ∈ F and 0 < r ≤ 1.

Such a µ is called a d–measure on F . If F is a d–set then md|F , the restriction to F of

the d–dimensional Hausdorff measure, is a d–measure on F . Also, any d–measure µ on F

is equivalent to md|F in the sense that, for some constants d1 and d2, d1µ ≤ md|F ≤ d2µ.

Finally, if F is a d–set, then dim(F ) = d and dim(F ∩ B(x, r)) = d for all x ∈ F and

r > 0. Rn itself and a closed domain in R
n with boundary locally in LipM1 are examples

of d–sets with d = n where the Lebesgue measure gives the d–measure.

Definition 6.2.1 Let F ⊂ R
n preserves Markov’s inequality if for every positive integer

k there exists a constant c = c(n, k, F ) such that, for all polynomials P ∈ Πk and all balls

B = B(x0, r), x0 ∈ F , 0 < r ≤ 1, we have

max
F∩B

|∇P | ≤ c

r
max
F∩B

|P |. (6.2)

We refer (6.2) as Markov’s inequality on F and note that for F = R
n it is the ordinary

Markov inequality in R
n. We are not concerned here with finding the best or even a

good constant c but are just interested in using (6.2) as a condition on F . The following

properties hold.

P1. F preserves Markov’s inequality if and only if

max
B

|P | ≤ cmax
F∩B

|P |, c = c(n, k, F ),

for all k, all P ∈ Πk, and all B = B(x0, r), x0 ∈ F , 0 < r ≤ 1.
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P2. Geometric Characterization. F preserves Markov’s inequality if and only if, for

some ε > 0, none of the sets B ∩ F , where B = B(x0, r), x0 ∈ F , 0 < r ≤ 1, is

contained in any band of type

{
x ∈ R

n : |b · (x− x0)| < εr
}
,

where b ∈ R
n and |b| = 1.

This property means that F is locally never too fiat but that F in a way extends in

all n dimensions. This property is used in constructing basis function using Hardy’s

multiquadric in n dimensions.

P3. If F ⊂ R
n is a d–set with d > n − 1, then F preserves Markov’s inequality. This

property gives us that F preserving Markov’s inequality, closure of a domain with

boundary locally in LipM1.

P4. F preserves Markov’s inequality if and only if there exists a constant d > 0 so that,

for every B = B(x0, r) where x0 ∈ F and 0 < r ≤ 1, there are n + l affinely

independent points ai ∈ F ∩ B, i = 1, · · · , n + 1 such that the n–dimensional ball

inscribed in the convex,hull of a1, · · · an+1 has radius not less than d.

We assume that X = {a1, · · · , an+1} ⊂ ∂Ω, where a1, · · · , an+1 are, for instance, chosen

in accordance with P4.

6.2.1 Besov Spaces on a d–set

We start by introducing some more notions related to the smoothness of a domain in R
n.

Let Hd be the d-dimensional Hausdorff measure. A Borel set Γ ∈ R
n is called a d-set,

0 < d ≤ n, if there exist positive constants c1 and c2 such that

c1r
d ≤ Hd(Γ ∩B(x, r)) ≤ c2r

d for x ∈ Γ, 0 < r ≤ 1. (6.3)

The notion d-set occurs both in the theory of function spaces and in fractal geometry.

Clearly R
n is a d-set with d = n and any convex compact set in R

n with non-empty
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interior is a d-set with d = n. Geometrically self-similar sets are typical examples of d-

sets. In particular the Cantor set in R and von Kochs snowflake curve in R
2 are d-sets

with d = log 2
log 3

and d = log 4
log 3

, respectively.

We say that the boundary ∂Ω of an open subset Ω of Rn is minimally smooth if there

exist an r > 0, an integer N , a numberM > 0 and a sequence (finite or infinite) U1, U2, · · ·
of open sets such that:

1. if x ∈ ∂Ω then B(x, r) ⊂ Ui for some i;

2. no point of Rn is contained in more than N of the sets Ui ;

3. for each i there exists an Gi with Ui ∩ Ω = Ui ∩ Gi where Gi is the rotation of a

Lipschitz domain of points in R
n of the form

{x = (x
′

, t) : t > Φ(x
′

), x
′ ∈ R

n−1, t ∈ R},

where φ : Rn−1 → R is a function (which may depend on Gi) satisfying a Hölder–

Lipschitz condition with bound M .

Remark 6.2.1 If Ω is an open subset of Rn having Lipschitz boundary ∂Ω then ∂Ω is a

d–set with d = n− 1 and the closure of Ω is a d–set with d = n.

Besov spaces on d–sets can be defined in terms of atomic decompositions. Let Nj be the

set of half–open dyadic cubes of order j; for

Q =

[
k1
2j
,
k1 + 1

2j

)
× · · · ×

[
kn
2j
,
kn + 1

2j

)
∈ Nj, let ηQ =

(
k1
2j
, · · · , kn

2j

)
.

For a dyadic cube Q of order j, Q̃ is the cube with the same center as Q and side length

equal to 3
2j
. We use standard multi–index notation, in particular l = (l1, l2, · · · , ln) denotes

a multi–index with length |ℓ| = ℓ1 + ℓ2 + · · · + ℓn. Now, following Jonsson and Kamont

(2001), we define less smooth atoms as:

Definition 6.2.2 Let 1 ≤ p ≤ ∞, 0 < α, K = [α] , and let α < β ≤ K + 1. Let Q be a

dyadic cube of order j. A function a : Rn → R is called an (α, β, p)–atom corresponding

to Q if and only if a ∈ CK(Rn) and

supp a ⊂ Q̃, (6.4)
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|Dℓa(x)| ≤ 2ℓ(d/p+|ℓ|−α) for x ∈ R
n, |ℓ| ≤ K, (6.5)

|Dℓa(x)−Dℓa(y)| ≤ 2ℓ(d/p+|ℓ|−α)|x− y|β−|ℓ| for x, y ∈ R
n, |ℓ| = K, (6.6)

Now, define Besov spaces Bα
p,q(F ) with atomic decomposition as:

Definition 6.2.3 Let 1 ≤ p, q ≤ ∞, α > 0, K = [α] and let α < β ≤ K + 1. A function

f :→ R belongs to Bα
p,q(F ) if and only if there are sequences {aQ : j ≥ 0, Q ∈ Nj} of

(α, β, p)–atoms and {vQ : j ≥ 0, Q ∈ Nj} of real coefficients, such that

f =
∞∑

j=0

∑

Q∈Nj

vQaQ, (6.7)

with the series convergent in Lp(F ), and




∞∑

j=0


∑

Q∈Nj

|vQ|p


q/p



1/q

<∞, (6.8)

with the sums replaced by the respective suprema in case p = ∞ or q = ∞. The norm of f

is defined as

‖f‖Bαp,q(F ) = inf








∞∑

j=0


∑

Q∈Nj

|vQ|p


q/p



1/q



, (6.9)

with the infimum taken with respect to all atomic decompositions of f .

We remark that in the above definition, condition j ≥ 0 can be replaced by j ≥ j0 with

any fixed j0 ∈ Z and recall that in case p = q = ∞ and 0 < α < 1, these Besov spaces

coincide with the usual spaces Lip(α, F ) of functions satisfying the Hölder condition on F

with the exponent α.

6.3 Characterization of Besov spaces on Minimally

Smooth Boundary

Despite the elementary nature of the interpolating transform, it yields reasonably strong

characterization for Hölder classes Cα, 0 < α < 1 and for the Besov classes embedding
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into some Cα. We develop results for Besov classes. This implies immediately results for

Hölder (–Zygmund) and L2–Sobolev classes.

Let ∂Ω be the minimally Lipschitz boundary of bounded domain Ω of Rn then we have

∂Ω be a d–set with d-measure µ, let {Ti}i≥0 be a admissible sequence of triangulations

of ∂Ω, with normal multiresolution approximation. Then we assume that {ψξ}ξ∈V be the

corresponding interpolating Schauder type basis, described in Proposition 5.5.1.

Remark 6.3.1 Note that if α > d/p then Bα
p,q(Ω) ⊂ C(Ω), which is a consequence of the

trace theorems for Besov spaces on Ω and on R
n and of the embedding theorems for Besov

spaces on R
n. If f ∈ Bα

p,q(Ω) with α > d/p, then the reconstruction of f from its samples

cj,ξ(f) converges to f in the Bα
p,q norm with appropriate ordering of individual terms in

topographic order is an important fact.

The proof of this remark: simply that the norm of the sequence consisting of the coefficients

in which were omitted in forming the approximation. Thus, if f ∈ Cα, 0 < α < 1,

use interpolating basis function of Hölder’s regularity, then finite interpolating expansion

converges in Cα norm.

The following theorem is derived from Theorem 5.1 in Jonsson and Kamont (2001) in

view of admissible sequence of functions.

Theorem 6.3.1 Let f ∈ C(Ω),

f =
∞∑

j=0

∑

ξ∈Vj

cξ(f)ψj,ξ,

where the coefficients cξ(f) are given by (5.25). Let 1 ≤ p, q ≤ ∞ and d/p < α < 1. Then,

f ∈ Bα
p,q(Ω) if and only if

Cα
p,q(f) :=




∞∑

j=0


2js(d/p−α)


∑

ξ∈Vj

|cξ(f)|p



1/p



q


1/q

<∞, s ∈ R, (6.10)

with the sums replaced by the the respective suprema in case p = ∞ or q = ∞. Further,

Cα
p,q is an equivalent norm in Bα

p,q(Ω).
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Proof : The proof follows by similar lines as proof in Jonsson and Kamont (2001) (The-

orem 5.1) except some technical modifications, for example see Triebel (1999). The proof

below is done in case p < ∞ and q < ∞, but the cases p = ∞ or q = ∞ require just

technical modifications.

For j ∈ Z, denote

I(j) =
{
i ≥ 0 : rδi ∼ 2−js

}
, (6.11)

where r is taken from Proposition 5.4.1, and let

j0 = min {j ∈ Z : I(j) 6= 0} . (6.12)

Note that condition T2 guarantees that there is m ∈ N such that for all j

#I(j) ≤ m. (6.13)

At first, assume that f ∈ C(F ) and (6.10) holds. We construct a suitable atomic decom-

position of f . For ξ ∈ V , let ψ̃j,ξ be the extension of ψj,ξ to R
n, given by Proposition 5.4.1.

For a dyadic cube Q of order j (half-open), let

V(Q) = {ξ ∈ V : ξ ∈ Vj ∩Q for some ξ ∈ I(j)} ,

cQ = {|cQ| : ξ ∈ V(Q)} ,

aQ =
2js(d/p−α)

mcQ

∑

ξ∈Vj

cξ(f)ψ̃j,ξ.

Then, supp aQ ⊂ Q̃ and

‖aQ‖∞ ≤ 2js(d/p−α),

since #V(Q) ≤ C (cf 6.13 and Proposition 5.4.1 ), we also have

|aQ(x)− aQ(y)| ≤ 2js(1+d/p−α)|x− y|,

with C1 depending only on c7 and r from Proposition 5.4.1, so aQ/C1 is an (α, 1, p)–atom

corresponding to Q. Since V(Q1) ∩ V(Q2) = ∅ for Q1 6= Q2, we have

f =
∞∑

j=j0

∑

Q∈Nj

mcQ
2js(d/p−α)

aQ,
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with the series convergent uniformly on ∂Ω; the definition of I(j), (6.13) and (6.10) imply

now 


∞∑

j=j0


∑

Q∈Nj

( mcQ
2js(d/p−α)

)p


q/p



1/q

≤ CCα
p,q(f) <∞,

i.e., this is the required atomic decomposition of f , and moreover there is C2 such that

‖f‖Bαp,q(Ω) ≤ C2C
α
p,q(f).

To prove the converse, let f ∈ Bα
p,q(Ω) and let

f =
∞∑

j=0

∑

Q∈Nj

vQaQ

be an atomic decomposition of f into (α, 1, p)–atoms such that




∞∑

j=0


∑

Q∈Nj

|vQ|p


q/p



1/q

≤ 2‖f‖Bαp,q(Ω).

Since α > d/p and

max
x∈Ω

|
∑

Q∈Nj

vQaQ(x)| ≤ C2d/p−α sup
Q∈Nj

|vQ| ≤ C2d/p−α


∑

Q∈Nj

|vQ|p



1/p

,

the series
∑∞

j=0

∑
Q∈Nj

vQaQ converges uniformly on Ω, and consequently

cξ(f) =
∞∑

j=0

∑

Q∈Nj

vQcξ(aQ).

Formula (5.25) and Definition 6.2.2 of an (α, 1, p)–atoms we have

|cξ(aQ)| ≤ 2.2js(d/p−α) (6.14)

and for i > 0,

|cξ(aQ)| ≤ δi2
js(1+d/p−α) for ξ ∈ Vi. (6.15)

For i ≥ 0, let

ji = max
{
j ≥ 0 : δi ≤ 2−js

}
, ji = 0 if δi > 1

and for ξ ∈ Vj, let

xξ(f) =
∑

0≤j≤ji

∑

Q∈Nj

vQcξ(aQ), yξ(f) =
∑

j≥ji

∑

Q∈Nj

vQcξ(aQ).
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Since supp aQ ∈ Q, formula (5.25) implies the existence of a constant k such that for all

ξ and j

#{Q ∈ Nj : cξ(aQ) 6= 0} ≤ k. (6.16)

At first, we estimate

Xi,p =

(
∑

ξ∈Vi

|xξ(f)|p
)p

.

Recall that ∂Ω is a d–set, and that for each η, ς ∈ Ui holds |η − ς| ≥ cδi for each Q ∈ Nj

with j ≤ ji, we have

#{ξ ∈ ξ ∈ Vi : cξ(aQ) 6= 0} ≤ C2−djδ−di .

Using this, (6.15) and (6.15), we get by Minkowskis and Jensens inequalities we have

Xi,p ≤
∑

0≤j≤ji


∑

ξ∈Vi


∑

Q∈Nj

|vQ||cξ(aQ)|



p


1/p

≤

≤ C
∑

0≤j≤ji


∑

ξ∈Vi

∑

Q∈Nj

|vQ|p|cξ(aQ)|p



1/p

≤

≤ C
∑

0≤j≤ji

δ
1−d/p
i 2js(1−α)


∑

Q∈Nj

|vQ|p



1/p

,

which implies

Xi,p,α = δ
d/p−α
i Xi,p ≤ Cδ

1−d/p
i

∑

0≤j≤ji

2js(1−α)


∑

Q∈Nj

|vQ|p



1/p

.

The last inequality, the choice of ji (i.e. δi2̃
−jis ) and Jensens inequality imply

Xi,p,α ≤ Cδ
1−d/p
i

∑

0≤j≤ji

2js(1−α)


∑

Q∈Nj

|vQ|p



1/p

. (6.17)

Since by T2 there is an m
′

such that, for all ℓ, #{i : ji = ℓ} = m
′

, we have

∑

i:ji≥j

δ
1−d/p
i =

∞∑

ℓ=j

∑

i:ji≥j

δ
1−d/p
i ≤ C

∞∑

ℓ=j

2−ℓ(1−α) ≤ C2−js(1−α).

Thus by (6.17)we get

∞∑

i=0

Xq
i,p,α ≤ Cq

∞∑

j=0


∑

Q∈Nj

|vQ|p


q/p

. (6.18)
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By similar arguments we can estimate

Yi,p =

(
∑

ξ∈Vi

|xξ(f)|p
)p

.

There is a constant k1 such that for Q ∈ Nj with j > ji such that

#{ξ ∈ Vi : cξ(aQ) 6= 0} ≤ k1

Using this, Jensens inequality and inequalities (6.14) and (6.16), we get

Yi,p ≤
∑

j>ji


∑

ξ∈Vi


∑

Q∈Nj

|vQ||cξ(aQ)|



p


1/p

≤

≤ C
∑

j>ji


∑

ξ∈Vi

∑

Q∈Nj

|vQ|p|cξ(aQ)|p



1/p

≤

≤ C
∑

j>ji

δ
d/p−α
i 2js(1−α)


∑

Q∈Nj

|vQ|p



1/p

,

which implies

Yi,p,α = δ
d/p−α
i Yi,p ≤ Cδ

d/p−α
i

∑

j>ji

2js(d/p−α)


∑

Q∈Nj

|vQ|p



1/p

.

Since α > d/p and δi ∼ 2−ji

Yi,p,α ≤ Cδ
d/p−α
i

∑

j>ji

2js(d/p−α)


∑

Q∈Nj

|vQ|p



1/p

.

Finally we get

∞∑

i=0

Y q
i,p,α ≤ Cq

∞∑

j=0


∑

Q∈Nj

|vQ|p


q/p

.

Since cξ(f) = xξ(f) + yξ(f), the last inequality and (6.18) imply (6.10). Hence the result.

For the later convenience, let V = ∪∞
j=0Vj, and let 4 be a linear order on V satisfying the

following conditions:

if ξ ∈ Vi and η ∈ Vj with i < j, then ξ 4 η. (6.19)
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6.3.1 Orthonormal Franklin Basis in L2(Ω)

Let ∂Ω be a d–set, and let {Ti}i≥0 be a admissible sequence of triangulations of ∂Ω. Let µ

be the d–measure on Ω. By the orthonormalization of the functions {ψξ, ξ ∈ V} in L2(Ω),

we obtain an orthonormal system {fξ, ξ ∈ V} of continuous piecewise linear functions.

More precisely, let 4 be a linear order on V satisfying (4.2). For each ξ ∈ V , there is

a unique (up to a sign) function f . such that fξ ∈ span{φη, η 4 ξ}, fξ is orthogonal in

L2(Ω) to span{φη, η 4 ξ} and ‖f‖L2
= 1. The system {fξ, ξ ∈ V} is an analogue on Ω of

the classical Franklin system.

For ξ ∈ Vj, j ≥ 1, let the coefficients {cξ,η}η∈Uj be such that

fξ =
∑

η∈Uj

cξ,ηφ
⋆
j,η. (6.20)

Moreover, let

Pξf =
∑

η4ξ

(f, fη)fη

be the orthogonal in L2(Ω), projection onto span{fη : η 4 ξ}. It follows from Proposition

5.5.1 and the density of continuous functions in Lp(Ω) for 1 ≤ p < ∞, that the collection

of functions {fξ : ξ ∈ V} is linearly dense in the spaces C(Ω) and Lp(Ω) for 1 ≤ p < ∞.

Further, it is proved in (Jonsson and Kamont, 2001) there is a finite constant C such that

for all ξ ∈ V and 1 ≤ p ≤ ∞

‖Pξ‖p = ‖Pξ : Lp(Ω) → Lp(Ω)‖ ≤ C.

Moreover, the set of functions {fξ}ξ∈V (ordered with respect to 4 satisfying (6.19)) is a

basis in Lp(Ω) for 1 ≤ p < ∞ and in C(Ω). Then, the Theorem 6.1 stated in (Jonsson

and Kamont, 2001) modified as:

Theorem 6.3.2 Let 1 ≤ p ≤ ∞ and 0 < α < 1. Let f ∈ Lp(Ω) for 1 ≤ p < ∞ and

f ∈ C(Ω) in case p = ∞,

f =
∞∑

i=0

∑

ξ∈Vi

dξψξ, where dξ = (f, fξ).
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Then, f ∈ Bα
p,q(Ω) if and only if

Dα
p,q(f) :=




∞∑

j=0


2js(d/p−d/2−α)


∑

ξ∈Vj

|dξ|p



1/p



q


1/q

<∞, 0 < s < 1, (6.21)

with the sums replaced by the the respective suprema in case p = ∞ or q = ∞. Further,

Dα
p,q is an equivalent norm in Bα

p,q(Ω).

Proof : The proof follows by similar lines of arguments as in Theorem 6.3.1( cf Theorem

6.1 in Jonsson and Kamont (2001)).

Let us note that the Theorem 6.3.2 implies also the following: let p, q, and a be as in

Theorem 6.3.2, and let {dξ : ξ ∈ V} be a sequence of real numbers satisfying (6.21). Then

the series
∑∞

j=0

∑
ξ∈Vj

dξfξ converges in Lp(Ω) (C(Ω) in case p = ∞), and for

f =
∞∑

j=0

∑

ξ∈Vj

dξfξ,

we have

dξ(f) = (f, fξ) = dξ for f ∈ Bα
p,q(Ω).

An analogous fact also follows from the proof of Theorem 6.3.1 for the system {ψξ, ξ ∈ V}
and sequences {cξ, ξ ∈ V} satisfying (6.10) (with convergence in C(Ω)). Thus, we have

Corollary 6.3.1 Let ∂Ω be a d–set, let {Tj}j≥0 be a admissible sequence of triangulations

of ∂Ω, and let Vi, V be the appropriate sets of vertices. For 1 ≤ p, q ≤ ∞ and 0 < α < 1,

let

bαp,q =




b = {bξ}ξ∈V : bαp,q =




∞∑

j=0


2js(d/p−d/2−α)


∑

ξ∈Vj

|dξ|p



1/p



q


1/q

<∞




,

with the sums replaced by respective suprema in case p = ∞ or q = ∞. Let {fξ, ξ ∈ V} be

the orthonormal Franklin type basis. Then,

f 7→ {(f, fξ)}ξ∈V
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is a linear isomorphism of Bα
p,q(Ω) and bαp,q. In case α > d/p, another isomorphism of

Bα
p,q(Ω) and b

α
p,q is given by

f 7→ {2jsd/2cξ(f)}ξ∈V ,

where cξ(f), given by formula (4.3), are the coefficients of f with respect to the interpolating

Schauder type basis.

The next corollary is important.

Corollary 6.3.2 Let ∂Ω be a d–set, let {Tj}j≥0 be a admissible sequence of triangulations

of ∂Ω. Let {ψξ, ξ ∈ V}, {fξ, ξ ∈ V} be the Schauder and Franklin type bases, respectively,

and let ψ⋆ξ = 2jsd/2ψξ. Then, for each p, q, α with 1 ≤ p ≤ ∞, d/p < α < 1 and

1 ≤ q <∞, the systems {ψ⋆ξ , ξ ∈ V} and {fξ, ξ ∈ V} are equivalent bases in Bα
p,q(Ω).

Moreover, for q = ∞, 1 ≤ p ≤ ∞, d/p < α < 1 and any sequence of real coefficients

{bξ, ξ ∈ V},

f =
∞∑

i=0

∑

ξ∈Vi

bξψ
⋆
ξ ∈ Bα

p,∞(Ω) ifandonlyif g =
∞∑

i=0

∑

ξ∈Vi

bξfξ ∈ Bα
p,∞(Ω),

and then ‖f‖Bαp,∞(Ω) ∼ ‖g‖Bαp,∞(Ω).

For 1 ≤ p, q ≤ ∞ and 0 < α < 1, let with the sums replaced by respective suprema

in case of p = ∞. Where α > d/p is essential rather then technical. The critical case

α = d/p and 1 ≤ p, q ≤ ∞.

6.3.2 Bounded Variation

It is much more obvious that the normal wavelet decomposition represent the space BV (Ω)

in terms of some reasonable assumption and it is appropriate space represent gray–scale

images. But the space BV does not have simple representation or even have a basis. This

make the representation is complicated.

The space BV := BV (Ω) of functions of bounded variation on a domain Ω ⊂ R
d is

important in Mathematics (geometric measure theory, differential geometry) and applica-

tions (image processing, nonlinear PDEs). The structure of BV is complicated by the fact
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that neither it nor the closely related Sobolev space W 1(L1(Ω)) have an unconditional ba-

sis. Wavelet decompositions of BV functions, while not characterizing this space, give fine

information (Cohen et al., 2003, 1999) about its structure and these decompositions can

be used to solve various extremal problems. Consider, for example, the extremal problem

K(f, t) := K(f, t;L2(Ω), BV (Ω)) := inf
g∈BV (Ω)

‖f − g‖L2(Ω) + t|g|BV (Ω), (6.22)

where t > 0 is a parameter. The expression (6.22) is called a K–functional in interpo-

lation of linear operators. It is used to describe interpolation spaces between L2(Ω) and

BV (Ω). This and related functionals also occur in image processing in such problems as

denoising and deblurring. The rate of decay of K(f, t) as t > 0 gives information about

the smoothness of f relative to L2(Ω) and BV (Ω).

Hence, we are looking for space which is closer to BV (Ω). The fact we could use here

is that B1
1,1 ⊂ BV ⊂ B1

1,∞, i.e., B1
1,1 is closer to BV . Then we would be able describe

the information of BV in terms B1
1,1. Hence, consider variation spaces Vp of Peetre (1976)

instead the ℓp. These have seminorm

‖f‖Vp = sup
ti<ti+1

‖(f(ti+1)− f(ti))i‖p,

where sup is all over the partitions of the line. Whence p = 1 is just the bounded variation

seminorm. Peetre points out that

B
d/p
p,1 ⊂ Vp ⊂ Bd/p

p,∞.

Then we have

B1
1,1 ⊂ BV.

Then the space BV has been characterized by the normal wavelet coefficients as

‖θ‖b1
1,1

≥ C‖f‖BV ,

where C is some positive constant.
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6.4 Summary

The main argument point of Horizon class images, i.e., gray–scale images, are decomposed

into less smooth function spaces with normal wavelets. This decomposition leads to non-

linear approximation of functions. In the next chapter nonlinear approximation of wavelet

coefficients and related image compression are briefly discussed.
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Chapter 7

Applications

7.1 Image Compression

This chapter concerns with approximation of functions which are represented by some

kind of data. By approximation, it means approximating the functions in certain function

spaces with a finite dimensional representation. Immediate applications of approximation

consist compression and noise removal. For images and many other kinds of data, an

approximation is typically defined on a discrete set of points on some grid. For example,

digital images are typically acquired by sampling the light intensity at discrete points on

a square grid of pixels (currently using a CCD array), and so image representations and

processing algorithms typically operate on this square grid. The square pixel grid is nearly

always assumed to be fixed with the dependent variable of the image, the pixel intensity.

While the acquisition and processing of image data on a square grid of pixels is simple, it

turns out to be very inefficient for representing many important image features including

the edges.

A discrete triangle △ is defined as the set of pixel locations (r, s) with non–overlapping

but, adjacent rectangular areas �r,s forming an area which is bounded by the area of

three discrete edges having pairwise end–point in common. Using these definitions we can

analogously define the discrete counterparts of a triangulation and mesh for which we use

the notationsM := (V,E, F ) and T . For the sake of brevity we will drop the word discrete
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in the remainder of this chapter.

Chapter 3 proposed a normal offset based approximation scheme generating piecewise

linear approximants that interpolate a given function at the knots defined by the locations

of the piercing points. In regions where the function is smooth, the normal mesh repre-

sentation converges rapidly to the function graph. In the vicinity of a contour, however,

extra vertical offsets need to be introduced to approximate the function graph, although

the triangulation captures the geometry quite well.

This chapter built on the idea developed in Chapter 3 to approximate two–dimensional

piecewise smooth functions using Hardy’s multiquadric. The presented method is a non-

linear piecewise polynomial approximation method over normal multilevel triangulations

(NMTs). We show experimental results for digital image encoding and compare them

with the JPEG2000 encoder and low–bit rate image coder, such as adaptive geometric

piecewise polynomial approximation (Kazinnik et al., 2007).

7.1.1 Surface Compression

The idea followed in this dissertation is to treat images as special cases of 2 D surfaces

and represent them using triangular functions. Because, the triangles edges can be placed

on arbitrary locations and orientations. Triangles have the potential to represent arbi-

trary edge contours (the geometry information) more accurately with a fewer number of

patches than a fixed square grid representation. The key idea is to use an admissible

triangulation that places vertices more densely in edge regions for accurate and efficient

edge representation, yielding a parsimonious image representation.

Multiresolution triangulations meshes are widely used in computer graphics for repre-

senting 2 D surfaces and 1 D piecewise smooth functions, because triangles have potential

to more efficient approximation at the discontinuities between the smooth pieces than the

other standard tools like wavelets. The normal multiresolution mesh decomposition is an

anisotropic representation of the 2 D surfaces. The same idea of anisotropic representation

lies at the basis decomposition of wedgelets and curvelets transforms.
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For efficient processing of 3 D mesh data, multiscale triangulation based on nonlinear

subdivision has been proposed in computer graphics. Multiscale mesh construction starts

from a small number of coarse-scale points on the surface. Finer triangular meshes are

formed by subdividing, that is, by gradually adding more data points (vertices, pixels).

Unlike the standard subdivision scheme that places new vertices at the midpoints of the

triangle edges, we can adapt the location of the new vertices based on local geometry

information. The normal mesh scheme selects the new points based on the local normal

direction computed from the previous coarser scale mesh (Guskov et al., 2000). DeVore

et al. (1992b) showed that compressed approximant s of f ∈ Bα
q (Lp(Ω)) with N terms

satisfies

‖f − s‖∞ ≤ C|f |Bσq (Lp(Ω))N
−σ/2, σ < 3.

The following section gives a simple surface compression algorithm based on nonlinear

thresholding of wavelet coefficients.

7.2 Compression of Quasi–Interpolating Expansions

It is shown that the norm of f in several smoothness classes can be determined from the

size of the coefficients in the wavelet decomposition. In this section, we consider a simple

surface compression algorithm and give an error bound for the approximation of f by its

compressed wavelet decomposition. The most natural norm for compression is the L∞

norm, hence our approximation results take place in this norm.

Suppose, we are given a function f ∈ Bα
q (Lp(Ω)), α > d/p that represents the surface,

that is being compressed. The surface compression algorithm is as follows: let j ≥ j0, and

k ∈ Kj, then we have a quasi–interpolating transform

f =
∑

j≥j0

∑

k∈Kj

dj,kψj,k,

for an interval with a very simple algorithmic structure. The interpolating transform for

the domains gives a sparse representation of certain functions; particularly for piecewise

polynomials. If f is a piecewise polynomial on Ω with less than or equal to P pieces, each

of degree D, sampled on a dyadic grid of n = 2j1 points, then from those samples, we can
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calculate the wavelet coefficients at scale j1 − 1 and each coarser scale, and there are only

C0 + P · (D + 1) · log2(n) nonzero wavelet coefficients among them.

General functions have many nonzero wavelet coefficients. But, often these can be well

approximated by a sparse sequence. Suppose that we have the collection of all interpolating

wavelet coefficients θ and, we sparsify these as follows: let ǫ > 0 denote a thresholding

control parameter and then

cǫj,ξ = cj,ξ · 1{|cj,ξ|>ǫ·2−jds/2}, for some s ∈ R.

Hence, at each level j ≥ j0 we set to zero for coefficients which are smaller in amplitude

than 2−jds/2.

Suppose that f ∈ Bα
p,q(Ω), for some α > d/p, then θǫ has finitely many nonzero terms.

The series obtained by summing the wavelet series corresponding to θǫ produces a recon-

struction f ǫ : f ǫ → f in Bα
p,q(Ω) as ǫ → 0. The sparse representation f ǫ has advantages

over another finite series. By Donoho (1992) (Theorem 3.8), if α > d/p then,for each

η > 0 we can pick p̃ < p so that α− η < 1/p̃ < α. Using ‖θ‖bαp,∞ ≤ ‖θ‖bαp,q we can define a

sequence ǫn such that N(ǫn) ≤ n, hence,

‖f − f ǫn‖ ≤ C(p, q, η)‖f‖Bαp,q(Ω)n
−(α−η)

is near optimal in a certain minimax compression model. Now QJ has n = 2J nonzero

terms, then

‖f −QJf‖ ≤ C‖f‖Bαp,∞(Ω)n
−(α−d/p),

except in the case p = ∞, this rate is slower than the rate n−α nearly attained. Hence,

QJ has a slower minimax rate of approximation than f ǫn in general; it gives worse recon-

structions for a given number of nonzero terms.

7.3 Motivation

Edges are the dominating features in piecewise smooth 2 D surfaces. An edge contains two

types of information where the edge is located, i.e., its location and the geometry. In 2 D,

geometry information plays a crucial role, much more than in 1 D. In 1 D piecewise smooth
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functions, discontinuities occur at isolated points, and these can be easily captured in a

wavelet transform. In 2 D, edge singularities lie along 1 D contours which are much harder

to capture. The time–scale analysis of the wavelet representation provides a powerful

tool for approximating a 1 D function f . Under mild conditions, a nonlinear wavelet

approximation fn containing the n largest terms of the wavelet expansion of f performs

well on a certain function class such as Besov spaces (DeVore et al., 1992a,b). Indeed, the

L2 approximation error decays rapidly with increasing n:

‖f − f 1−Dwavelet‖ = O(n−ν). (7.1)

In this equation, ν stands for

ν = min(p̃, α),

with p̃ the number of (dual) vanishing moments of the wavelet analysis and α the Lips-

chitz regularity of the signal at its non–singular points. Wavelets provide a very efficient

representation of 1 D function with certain smoothness because, in a 1 D function, the ge-

ometry information consists of merely a few isolated points. Wavelets are thus well–suited

for estimating a piecewise smooth 1 D function in presence of noise. In the minimax sense,

the performance of a simple n–term approximation algorithm comes within a negligible

logarithmic factor of the best possible method involving a piecewise polynomial with knots

at the (assumed known) positions of the singularities (Donoho, 1994).

Unfortunately, this approximation does not carry over into two and higher dimensions.

Indeed, standard tensor–product wavelet transforms based on a square grid of 2 D sampling

points are ill–prepared to represent edges, since many wavelets overlap with 1 D edges

leading to a preponderance of geometry information. Given a 2 D function f , that is

smooth except for an edge singularity along a smooth (say C2 ) curve, the nonlinear

wavelet approximation fn using the n largest wavelet terms has an L2 error rate

‖f − f 2−Dwavelet‖ = O(n−1/2).

This outperforms a Fourier procedure, where the best we can do is a linear approximation,

taking the first n Fourier coefficients

‖f − f 2−DFourier‖ = O(n−1/4).
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Nevertheless, neither of these procedures comes close to the 1 D rate of (7.1). This is

partly due to an inherent dimensionality effect: approximation of 2 D data is inevitably

more difficult than 1 D data. Yet, wavelets do not obtain the optimal 2 D rate either.

They approximate a curved singularity as a piecewise constant. This observation explains

the blocky output of wavelet image approximations.

In order to achieve better approximation rates on 2 D edge contours, new edge–adaptive

multiscale decompositions have been developed in recent years. Due to the numerous

possible orientations, lengths and curvatures of edges, it is impossible to catch all possible

edges by a basis decomposition. The new multiscale decomposition may proceed in over

complete representations (frames), such as contourlets (Do and Vetterli, 2003) or curvelets

(Candès and Donoho, 2000).

Although, interpolating normal approximations have an optimal n–terms convergence

rate (for n → ∞) for smooth curves (Daubechies et al., 2004; Guskov et al., 2000) and

have been used in practice for approximating smooth 2–D manifolds (Guskov et al., 2000).

The interpolating meshes or polylines will be highly aliased approximants for relatively

few terms. Indeed, top–down construction of interpolating meshes works with unfiltered

subsamples from the input data. For this reason Friedel et al. (2004) proposed to use

approximating normal meshes. The application of normal meshes for real images is subject

of current research. The results in this dissertation should therefore be seen as provisional.

Normal meshes could be used for image modeling, compression, and processing. However,

algorithms will have to take into account that the decomposition is highly nonlinear.

Normal offsets are the key to adaptive triangulation of 2 D data sets. These data may

contain line singularities and posing substantial problems to any tensor product based

decomposition.

Aliasing effects are even more noticeable when the objects contain jumps. For the two-

dimensional case, Jansen et al. (2005) give an asymptotic convergence analysis for the

simple case of Horizon class images. However, the cited work does not give a treatment of

more general objects that are piecewise smooth (instead of constant) objects added with

textures and noise. For low bit rates, the number of segments in the final partition has

to be limited, and an interpolating normal mesh will result in poor approximations of
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the function graph. Further implementation on natural scene images by Aerschot (2009)

does not give satisfactory results, i.e., the compression ratio is approximately 1.1bpp.

Moreover, its tree structured coefficient selection has to deal with the topological aspects.

The nonlinear character of the decomposition itself makes it harder to analyze the effect

of removing or modifying a given coefficient. In 2 D, the topological exceptions complicate

the whole thing: changing a single coefficient may influence the topology on the following

finer grids. But, it is difficult to deal with different types of images in a cohesive manner.

Therefore, it is equipped with the interpolating normal meshes with Hardy’s multiquadric

basis functions.

7.4 Digital Images

The image, viewed as a function, is approximated by a linear spline over the normal

multiresolution triangulation of a small adaptively chosen set of significant pixels, such

pixels capture the geometry of the image. In general, the significant pixels are scattered in

the rectangular image domain. Their normal multiresolution triangulation is anisotropic.

All linear splines over this adaptive triangulation constitute a suitable approximation space

for the image, from which we take the best approximation to the image by minimizing

the mean square error. This linear spline is a continuous function which can be evaluated

at any point in the rectangular image domain, in particular, at the discrete set of pixels.

Indeed, the compressed image is reconstructed from this linear spline. Moreover, our

specific representation of the image (by a continuous function) allows us to display the

reconstructed image on any subset of the (continuous) image domain. This option is

especially relevant for applications such as zooming, rescaling and conversion between

different image representations.

For implementation of this scheme we need triangulation of the image. There are sev-

eral types of triangulation, such as Delaunay triangulation, but for our purpose Normal

Multiresolution Triangulation (NMT) is considered, since it shows the multiresolution

properties. The adjustments to be made in order to implement a normal mesh based

decomposition. For instance, obtaining nested triangulations on a regular grid is more
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cumbersome than in the continuous setting.

The content of f ∈ H is completely determined by the planar curve γ. The goal is to

approximate γ using an adaptive triangulation method such that the triangle boundaries

form a piecewise affine continuous (i.e. polyline) approximation of γ. This is in contrast

with tensor product wavelets where γ is approximated by the borders of the rectangular

supports creating a piecewise constant approximation of γ. Given a triangular mesh, M0

with vertices V0, edges E0 and triangles T0, the normal offset scheme consists of an iterative

application of three steps.

1. The first step, the prediction step, constructs additional vertices – prediction points

– as linear combinations of surrounding mesh points.

2. The second step, the correction step, constructs piercing points as the intersection

of rays normal to the coarser mesh, going through those prediction points and the

image surface.

3. The last step, the interconnection step, adds all piercing points to the set of vertices

Vj forming Vj+1. The corresponding mesh Mj+1 with edges Ej+1 and triangles Tj+1

is constructed by a triangulation of Vj+1.

These steps are repeated, creating meshes at different resolution levels j, until a certain

stopping criterion is satisfied.

The created piercing points have their (x, y) coordinate on the projection of the triangle

edge from which the normal ray was shot. After the vertex insertion step, each triangle

is locally subdivided by creating edges connecting each piercing point to another piercing

point or triangle vertex that belong to the same triangle. Hence, all edges in Ej+1 are

either obtained by an edge refinement of a coarser edge in Ej , or inserted as a connection

between admissible combinations of piercing point or triangle vertices.

As each triangle is split into four subtriangles. The nested triangulation can be repre-

sented as a quadtree. With each node of this quadtree we can connect a triangle subdivision

operator. The collection of triangles at nodes having the same level form a conforming

triangulation. A conforming triangulation requires that two triangles have either an edge
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in common or have no point in common. The triangle subdivision rule can be fixed in

advance or can be made data–dependent.

When the splitting rule is fixed in advance, no extra topological information has to be

stored, since the connection of new piercing points always happens in the same way. On

the other hand the triangle splitting is blind with respect to the shape of the above lying

surface connected as defined by f .

This already lets us assume that in the neighborhood of a contour, the discontinuity will

not be approximated appropriately. The fact is piercing points always have correlation.

In order to circumviate this problem adaptive triangulation is introduced by aligning with

the contours of the image. But, here it is proposed to use Halton sequence of points

described below. The piercing points are adjusted with Halton sequence of points as

closest neighbour. Functions are sampled at Halton data sites generate set of points in

the unit square Ω = [0, 1]× [0, 1]. For interpolation functions (images), the basis function

φ(r) = (r2 + c2)1/2 is used as in (7.3), where r = ‖x− 2−jk‖, k ∈ Z and c = 0.01.

7.4.1 Geometric Images

The majority of images (rendered or captured) are projections of 3 D–scenes onto a lower

dimensional (2 D) space. In general, a natural scene consists of a collection of smoothly

shaded objects demarcated by smooth boundaries. In case of only one object is present, its

boundary will contrast with the background illumination resulting in a smoothly varying

contour representing the objects silhouette. As such, the contour holds a crucial part

of the information contained in the image. This is acknowledged by the ability of the

human visual system to interpret simple line drawings or sketches and connect them to

real–world objects. In case of multiple objects, the image is a nonlinear superposition

(caused by blending or occlusion) of the projections of each object separately. Moreover,

contours may be interrupted at places where another object appears on the foreground,

leading to contour–crossing. This review mainly focuses on images consisting of smoothly

gray–scaled objects that are separated from each other by smoothly evolving boundaries.
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7.4.2 Piecewise Smooth Images

The contours or singularity curves that are present in geometrical images can be seen

as lower–dimensional manifolds embedded in a higher–dimensional observation space (the

image itself). If we want to focus on the approximation of the contour, we need to con-

centrate on geometric smoothness (smoothness of the contour) rather than smoothness of

the object’s surface. For this reason, we define the Horizon class, consisting of piecewise

constant functions to measure geometric approximation properties.

7.4.3 Horizon class

The simplest subset of piecewise smooth functions we use for benchmarking is the horizon

class H introduced by Donoho (1999). These objects are constants except for a smooth

boundary (with Hölder’s regularity β ∈ (1, 2]) over the unit square [0, 1]2.

Definition 7.4.1 (Hölder’s regularity). A function f(x) defined on [0, 1] is said to be in

the Hölder’s class Hβ, β > 0 if there exists a constant Cβ < 1 such that

|Dαf(x)−Dαf(y)| ≤ Cβ|x− y|β−α, 0 ≤ x, y ≤ 1, (7.2)

where α is the largest integer not exceeding the Hölder exponent β and Dα denoting the

α–th derivative.

The Hölder exponent measures the fractional (Lipschitz) regularity of Dαf .

Definition 7.4.2 Define the Horizon class Hβ as the set of functions defined on [0, 1] ×
[0, 1] taking the value zero on one side of the Hölder continuous curve f(x) and the value

h on the other side.

Hβ :=



γ : [0, 1]2 → {0, h} : (x, y) →





h if y < f(x)

0 otherwise



 ,

with f(x) ∈ Hβ, β ∈ (1, 2].

Consequently, all image information is located in the boundary f(x).
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7.4.4 Piecewise smooth function class

A piecewise smooth image is a function on the unit square characterized by a smooth

curve in Hα and two 2–dimensional functions in Hβ on either side of the curve.

Definition 7.4.3 (Piecewise smooth images). PSα,β is the class of functions f such that

there exists a curve y = γ(x), γ ∈ Hα, α ∈ (1, 2] and two functions f1, f2 ∈ Hβ, β ∈ (1, 2]

such that

PSα,β :=



f : [0, 1]2 → R →





f1 if y < f(x)

f2 otherwise



 .

7.5 Numerical Experiments

In this section, it is shown that the proposed scheme in Chapter 3 is sufficient to demon-

strate the multiresolution approximation in different resolution level with suitable inter-

polating basis functions which is Hardy’s multiquadric, φ(r) = (r2 + c2)β/2, where r is the

Euclidean distance, c is a suitably chosen constant and β is the tension parameter. The

major part of interpolation is that a linear combination of translate of the basis function

φ : Rd → R, φ(x) = φ(‖x‖2), such that

Sf,X(x) =
N∑

k=1

ckφ(‖x− xk‖2). (7.3)

The basis function φ is radial with respect to Euclidean norm ‖ · ‖2.

In this experiment it is assumed that the basis function φ, need not to have a compact

support and considered the interpolation of the form (7.3). By definition, the approxima-

tion is hierarchical method which starts with a decomposition of X into a nested sequence

X1 ⊂ X2 ⊂ · · · ⊂ XM−1 ⊂ XM = X,

of M subsets

Xk = {x(k)1 , · · · , x(k)Nk
} ⊂ X, 1 ≤ k ≤M.

This allows the interpolation to be broken up into M steps. The density of Xk can be

measured in various ways, but here it is concentrated on two which between them nicely
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capture this concept. The first is the separation distance

q(Xk) := min
1≤l<m≤Nk

‖x(k)l − x(k)m ‖/2,

which is half the distance between the closest pair of points in Xk. The second is the

radius of the largest inner empty sphere

Q(Xk) := max
x∈Ω

min
1≤j≤Nk

‖x− x
(k)
j ‖,

where Ω is some fixed compact region in R
d containing the original X. For convenience,

it is assumed that the Ω is the closed interior of some polygon ∂Ω surrounding X which

could, for example, be its convex hull. The measure of q and Q helps to remove the nodes

in progressive reconstruction. Removal nodes can be defined as follows.

Definition 7.5.1 If x ∈ ∂Ω is boundary node it has precisely two boundary neighbors

x1, x2. In this case define

dmin(x) = min
i=1,2

‖xi − x‖, dmax(x) = max
i=1,2

‖xi − x‖.

Definition 7.5.2 A node x ∈ ∂Ω is removable if

• dmin(x) ≤ dmin(y) for all y ∈ ∂Ω, and

• dmax(x) ≤ dmax(y) whenever dmin(x) = dmin(y).

However, the stability of the interpolation process is intimately related to the size of the

smallest eigenvalue of the corresponding collocation matrix AX,φ, consequently depends

on the separation distance

q = min
1≤j<m≤Nk

‖xj − xk‖/2,

of the set X.

Pointwise error estimates of the interpolation method are usually to be obtained in terms

of a local density measure around each of the points x ∈ ∂Ω. To be more precise, for some

positive r this pointwise density measure is given by

hr(x) := sup
y∈Br(x)

min
1≤j≤N

‖x− xj‖,
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and is subject to hr(x) ≤ h for all x ∈ ∂Ω with some positive constant h which does not

depend on x. Then, by previous definition of

Q := max
x∈∂Ω

min
1≤j≤N

‖x− xj‖,

establish an appropriate relation to h, since

Q := lim
r→0

max
x∈∂Ω

hr(x).

It is believed that this method would be useful in practical applications for interpolating

general scattered data sets. In analogy with hierarchical methods based on regular grids,

(Nk)k to be geometric sequences.

7.5.1 Sampling Operator

A digital image is a rectangular grid of pixels, where each pixel bears a colour value or

a gray–scale luminance. We restrict the following discussion to gray–scale images. The

digital image can be viewed as an element I ∈ {0, 1, · · · , 2r−1}X , where X is the set of

pixels, and where r is the number of bits in the representation of the luminance values.

In this dissertation, images are considered as functions over the convex hull [X] of the set

of pixels X, so that [X] constitutes the rectangular image domain. Each pixel in X is

corresponding to a planar grid point with integer coordinates lying in [X].

This section focus on discretization of digital images and its interpolation by using normal

multiresolution approximation using Hardy’s multiquadric functions. A digital n×n gray–

scale image f is a regular arrangement of pixels or picture elements. Pixels are disjoint

rectangular areas �r,s := [0, n−1] × [0, n−1] + (r.n−1, s.n−1) having an integer gray value

fr,s. Use the shorthand vr,s := (r, s, fr,s) to represent a pixel and call (r, s), the location of

the pixel. The location of a pixel vr,s is denoted by (r, s). A pixel is the discrete version

of a vertex and both terms will be used interchangeably. The major difference is that this

scheme uses sampling rather than prediction.

Quasi–Monte Carlo simulation is the traditional Monte Carlo simulation but using quasi–

random sequences instead (pseudo) random numbers. These sequences are used to generate
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representative samples from the probability distributions that we are simulating in our

practical problem. The quasi–random sequences, also called low–discrepancy sequences,

in several cases permit to improve the performance of Monte Carlo simulations, offering

shorter computational times and/or higher accuracy. The essential characteristic of the

Monte Carlo method is the use of random sampling techniques to reach a solution of the

physical problem.

The generation of (quasi or pseudo) random numbers is a way to generate representative

samples (a lot of scenarios) to describe the uncertainties of our physical problem through

probability distributions. The uniform [0, 1] distribution permits to generate all the distri-

butions that we need to perform the simulations. Monte Carlo simulations is the strongest

application of quasi-random sequences, for example, the independence along the sample

path of a stochastic variable. For problems that we need to simulate the entire path we

have a multi–dimensional problem.

The uniform distribution in the interval [0, 1] is, for practical purposes, the only distribu-

tion that we need to generate for our simulations. The reason is that the samples from the

other distributions are derived using the uniform distribution. The uniform distribution

can be used to generate either pseudo random number or quasi–random numbers, and

algorithms are available to transform a uniform distribution to any other distribution.

The worst–case for Quasi-Monte Carlo (QMC) is much inferior to the crude Monte Carlo

with pseudo random numbers. However, the best QMC case is always better than MC.

The worst-case bound is not very reliable for practical purposes and, in high–dimensional

problems, the reader needs to be aware of the too large required value for N that makes

the QMC’s worst–case better than the crude Monte Carlo.

Quasi–Monte Carlo methods are valid for integration problems, but may not be directly

applicable to simulations, due to the correlations between the points of a quasi–random

sequence. The improved accuracy of quasi–Monte Carlo methods is generally lost for

problems of high dimension.
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7.5.2 Halton sequence

The van der Corput sequence is the basic one dimensional low discrepancy sequence. The

van der Corput base 2 sequence is also the first dimension of the Halton sequence, the

most basic low discrepancy sequence of our interest, which can be viewed as the building

block of other low discrepancy sequences. Halton (1960), Faure (1982), Sobol (1967),

and Niederreiter (1987) are the best known low–discrepancy sequences. The construction

process of new low–discrepancy sequences involves sub–dividing the unit hypercube into

sub–volumes (boxes) of constant volume, which have faces parallel to the hypercube’s

faces. The idea is to put a number in each of these sub–volumes before going to a finer

grid, i.e., nested sequence of points, needed in multiresolution analysis.

In our more basic real option problem, with one source of uncertainty, we can think the

number of dimensions d as the number of discrete time (space) intervals of one sample

path, so d = T/D, where T is typically the expiration of our real options or the horizon

of interest, and where D is the base. The number of iterations N is the number of sample

paths. So, across the paths at one specific time instant, we want a good uniform sample

numbers in order to generate for example a good Normal distribution of a Brownian

motion, that probably will result in a Log–normal distribution. The main challenge for

the low discrepancy sequences is to avoid the multi–dimensional clustering caused by the

correlations between the dimensions. We wish to generate low discrepancy sequences with

no correlation for every pair of dimensions.

In statistics Halton sequences are sequences used to generate points in space for numerical

methods. Although, these sequences are deterministic they are of low discrepancy, that is,

appear to be random for many purposes. The Halton sequence is constructed according to

a deterministic method that uses a prime number as its base. The Halton sequence uses

one different prime base for each dimension. For the first dimension uses base 2, for the

second dimension Halton uses base 3, for the third dimension uses base 5, and so on.
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7.6 Experimental Results

We believe that these Halton points sufficiently describe normal multiresolution points

sequence in gray–scale images. Then we assume that the Halton point sequences are used

in approximating gray–scale images. The following types of images are used to illustrate

how each method models geometric and functional smoothness:

1. Horizon images: used to reveal a scheme’s ability to capture geometric content,

2. Piecewise smooth images: indicate the ability to approximate both geometric as well

as functional content,

3. Natural Scene images : to reveal the capability to approximate less smooth regions.

It is used Lebesgue–based metrics to measure approximation error, although they are not

suited to measure geometric resemblance. Ideally, it should be a metric that is closer to

the human visual system and incorporates correlation of error locations, but the debate

on image quality assessment is still an ongoing research topic and beyond the scope of this

dissertation. For the L2 norm we express approximation quality of f̃ with respect to f in

terms of peak signal to noise ratio (PSNR),

PSNR = 10 log10

(
max(f)

MSE

)
, MSE =

1

N

N∑

i=1

|fi − f̃i|2.

Define an image as a square S = [0, 1] × [0, 1]. Let us denote the function H(x) in

S as the horizon, that is, any one dimensional, continuous and appropriately smooth

function defined on the interval [0, 1]. Such function, for our further purposes, must fulfill

appropriate Hölder regularity conditions.

Hence, any horizon function H(x) must fulfill conditions H ∈ Holder1(C1) and H ∈
Holderα(Cα) which measure a degree of fractional regularity of H and derivative H

′

respectively. In other words, it assures appropriately high smoothness of the function.

Consider the two dimensional characteristic function

f(x1, x2) = 1x2≥H(x1) 0 ≤ x1, x2 ≤ 1.
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(a) Original Image (b) 30.14dB at 0.1831

Figure 7.1: Horizon Class Image Constructed with NMT Interpolation (MQF)

(a) PSNR of 37.6dB (b) PSNR of 29dB

Figure 7.2: Wedgelet and Normal Approximation respectively

Let f be a function in H(x) then we call f is a horizon. The function models a black and

white image with a horizon, where the image is white above the horizon and black below.

Experiments start with the following Horizon Class image of 128× 128.

Figure 7.1 shows the results of the experiments on an horizon image. As expected for the

wavelet based (frequency) coder, it is noticed ringing artifacts around the contour. There

are however localized artifacts in the vicinity of the contour which can be accredited to

discretization errors. Several of these errors can be circumvented by careful implementation

optimizations at pixel–level.
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(a) Original Image (b) 29.54dB at 0.01bpp MQF

Figure 7.3: Piecewise Smooth Image Constructed with NMT Interpolation (MQF)

Wedgelets were used at the very beginning to approximate the special kind of smooth

images with one continuous smooth line of discontinuity. The class of such images is called

as the simple horizon class. For a fair comparison, it is the horizon image since the wedgelet

dictionary contains piecewise constant elements, for approximately the same amount of

distortion (PSNR). We observe that wedgelets create a piecewise affine approximation of

the contour, while the normal mesh based scheme constructs more fluent approximations

by adding continuity to the contour approximations. Since wedgelets construct box splits

independently from adjacent boxes (terminal squares), the end points of the wedges do

not have to join at the boundary of the terminal squares. Moreover, both endpoints of

each wedge have to lie on the border of a dyadic square which restricts the placements

of the knots (x and/or y coordinate dyadic) of the piecewise linear approximation of

the contour. In contrast, the normal multilevel triangulation (NMT) method is an edge

refinement method committing two neighboring triangle leaves at the same scale to have

their edges joined at the vertices of the common edge.

Wedgelets do not allow for geometric multiresolution representations. Indeed, the geom-

etry is only modeled at the terminal leaves of a Recursive Dyadic Partitioning tree. Hence,

when retrieving a representation on a coarser scale the geometric information will be lost

and the transform degenerates to a hereditary constrained Haar transform. In contrast,

normal mesh based methods start driving their segment splits towards the contour from
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(a) Wedgelet approximation (constant) (b) Wedgelet approximation (linear)

Figure 7.4: Wedgelet approximation: piecewise constant and piecewise linear models.

PSNR 30dB.

the most coarse scale. Although, wedgelets have a nearly optimal convergence behavior

with respect to horizon images, the performance decreases when more than one contour is

present.

The theory of wedgelets was applied with success to many areas of digital image pro-

cessing. It was used in multiresolution compression of images by Wakin et al. (2003).

As shown in (Wakin et al., 2003) the compressor based on wedgelets even gives better

performance in image compression than the recognized standard of JPEG2000. Wedgelets

has also been used successfully in image segmentation and noise removal. For the piece-

wise smooth setting, it is used both the original wedgelet approximation using piecewise

constant models and piecewise affine models (platelets).

The application of wedgelets considered in this dissertation is only image coding, espe-

cially compression. Hence, it has been counted the number of all possible dyadic edges

which form the dyadic dictionary of edges present in an image. Of course, as one can easily

see, this dictionary does not contain all possible edges, which may occur in an image (it is

easy to see that the number of all such edges equals to N4 (number of edges) which is far

larger than M (size of the image)). But, this dictionary allows to represent any smooth

image with high accuracy. It follows from the fact that the dictionary contains edges in
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many locations, scales and orientations.

Assume that considered edges are not degenerated, that is, they do not lie on the border

of the square. Then each such edge splits any dyadic square S into two pieces. Let

us consider the one of the two pieces which is bounded by lines connecting in clockwise

direction from the upper right corner the first of the two edge’s vertices and then the

second one. Define then the indicator function of that piece. Such function we call

wedgelet defined by the edge and denote by wS,m. The set of wedgelets of any S is defined

as

W (S) = {1}
⋃

{allpossible wS,m}.

Finally, let us define the Wedgelet DictionaryW as the sum of all setsW (S) of all dyadic

squares S(k1, k2, j), 0 ≤ k1, k2 < 2j , 0 ≤ j ≤ J , where J is a sufficiently large positive

integer. Note that such set, similarly as in the case of edge’s set, contains wedgelets in

many locations, scales and orientations.

The Figure 7.4 shows visual artifacts with constant and linear wedgelet coding schemes

at low bit rate. The Figure 7.3 clearly show that NMT Interpolation scheme is superior

than the wedgelet approximation models in terms of compression and PSNR. The ringing

artifacts could be solved by carefully selecting triangles and the corresponding Halton

points. Further to the above the following moon surface image is used to construct an

image with NMT Interpolation. The moon image is an ideal sample image to describe

piecewise smooth function in horizon class. The Figure A.1 sufficiently demonstrate the

use of NMT Interpolation scheme over piecewise smooth images.

Two gray–scale images Cameraman and Lena with 256× 256 pixels are selected for this

experiment for natural scene images. These images are discrete sets of pixels. In order to

find normal piercing points, we need to interpolate these pixel matrices. The Cameraman

image is more geometric than Lena. A trivial triangular mesh allows for a piecewise

planar interpolation in each point. As a consequence, there is no real discontinuity, only

steep transitions. Many edges in images are blurred over several pixels anyway. The

special actions to deal with real discontinuities are therefore unnecessary in this practical

example.
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The NMT Interpolation scheme is applied on both images. The following figures shows

that the NMT Interpolation performs well in the Lena image than the Cameraman image.

Ringing effects is observed at the geometric boarder of the Cameraman image. This

could be solved by carefully selecting interpolating points. Moreover, inset of each images

with 128 × 128 pixels are encoded with the same NMT Interpolation scheme. For small

structures, such as the eyes in the photograph, or for texture, wavelets perform better in

filling up the details. These results are compared with other schemes namely JPEG2000

and GPP. Inset of the cameramen image Figure A.2 and Lena image Figure A.4 clearly

shows that NMT Interpolation scheme also performs well in small structures, such as

the eyes in the photograph, or for texture regions in images, at low–bit rate than the

JPEG2000. Figure A.5 shows that the NMT Interpolation scheme performs well than

the popular image coder JPEG2000 at low–bit rate and the visual effect is far better

than geometric piecewise polynomial approximation. It is important to observe that the

trade off between bit–rate and peak to signal to nose ratio (PSNR) achieved using NMT

Interpolation is better than the other popular image coding schemes.

In practice, images are obtained as samples on a square grid, hence using normal meshes

is equivalent to a remeshing operation. A second inverse remeshing would be necessary to

display a normal mesh approximation using a conventional displays. This makes things

more complicated in practice. But, NMT Interpolation scheme does not require such

remeshing. This is a clear advantage over the NMT approximation.

7.7 Summary

In this chapter, the performance of the normal multiresolution approximation is com-

pared with recent geometric approximation schemes. Although, there are no practical

wedgelet image coders available yet, the experiments show that the normal approximation

schemes proposed in this dissertation is a valid competitor in image coding schemes. When

compared to wedgelets, the normal approximation schemes produce more fluent approxi-

mations of the geometric content, resulting in more visually pleasing approximations.

NMT Interpolation scheme compress natural scene images more effectively than the
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JPEG2000 standard. Further compression is also possible by eliminating redundant nodes

of interpolation.

This dissertation is concluded with the following chapter where it is discussed the out-

come of this research and make some comments on further research.
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Chapter 8

Conclusion and Further Research

This dissertation is concluded with a discussion on the results and an outlook on possible

further research. The central result in this thesis is the study of necessary and sufficient

conditions on normal wavelet bases for C(Ω), where Ω is a bounded and simply connected

domain of Rd, d ≥ 1, to constitute bases in less smooth spaces, such as Besov spaces

Bα
p,q(Ω), 1 ≤ p, q < ∞, 1 < α < 1, (Theorem 6.3.1). The underlying concept is that

how normal multiresolution approximation works with gray–scale images. Thus, wavelet

coefficient decay can be characterized in terms of membership in a suitable sequence space.

More precisely, the arising coefficients are in bαp,q if and only if the function s is in the Besov

spaces, Bα
p,q. Moreover, triangulation in multivariate setting, that is, the surface is not too

flat, is effectively solved with the multiquadric function. This is an important consequence

of this scheme.

In Chapter 3, it is established that the interpolating basis function for normal mul-

tiresolution approximation using Hardy’s multiquadric function ϕ(x) = (x + λ)β/2. The

remarkable fact is that the basis function span shift–invariant spaces. Based on the linear

combination of the basis function form the shift–invariant space, the approximation prop-

erties of normal multiresolution approximation are established in Sobolev spaces which

is:

‖f − Sf‖ ≤ C‖f‖W k
2
(Ω)h

k+1,
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if h ≤ h0 with h defined as

h := sup
x∈Ω

min
1≤j≤N

‖x− xj‖.

In Chapter 4, the interpolating basis function of multiquadric has been generalized

with localization process in order to have compact support and then realized as quasi–

interpolating wavelet on real line, where quasi–interpolating wavelet defined on the princi-

ple of one–point quasi–interpolating function which generate a scale space. The construc-

tion of an quasi–interpolating basis is built to resemble the construction of non–orthogonal

wavelet bases on real line, by making simple assumption that wavelets are simply higher

resolution quasi–interpolating scaling function. However, this is just one way to construct

quasi–interpolants. There is a dyadic construction of an interpolating splines of Schauder

basis of C[0, 1] by Domsta (1976) for which function space characterizations have been

proven; but Domsta’s basis does not have dilation and translation homogeneity.

The quasi–interpolating basis constructed in this dissertation is shift invariant and scale

invariant in L1(R). This has been realized as triangulation in a bounded domain. Thus,

the wavelet decomposition considered as linear splines on triangulation at different resolu-

tion level with subdivision connectivity. Moreover, pointwise convergence property of the

wavelet transform is explored.

In Chapter 5, the triangulation property of the quasi–interpolating basis function, ana-

log to Schauder basis, is characterized in a multivariate domain Ω with the assumption

that the boundary ∂Ω is closed set that preserving Markov’s inequality, which resolve the

problem of basis function is not piecewise linear in multivariate settings, i.e., the quasi–

interpolating wavelet in the previous chapter is realized in multivariate setting with some

additional assumptions. An important assumption is that the open bounded domain sat-

isfying uniform cone condition. Then with the assumption on boundary of the domain

satisfying minimal smooth condition the quasi–interpolating wavelet is extended to Eu-

clidean space. The multiresolution property of the basis function is defined in terms of

multiresolution property of the domain on which the basis function is constructed.

Further, an admissible triangulation property is introduced in this chapter in order to

have a fractal nature of wavelet decomposition, which implies a d–set on ∂Ω. An important
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advantage is that the the basis function is boundary free as opposed to other construction

of wavelet basis functions.

In Chapter 6, function with less smoothness are decomposed in Besov spaces based on

the normal wavelet basis function. Thus, the normal wavelets are realized in less smooth

spaces. In this chapter much of the work is similar to Jonsson and Kamont (2001) except

some additional assumptions that the normal wavelet decomposition produces admissible

triangulation and the boundary of the domain admits some regularity conditions.

Based on the above decomposition, a compressing scheme is presented in Chapter 7 which

is optimal in the sense of nonlinear approximation i.e., normal wavelets may be quantized

with nonlinear approximation as an optimal procedure for image compression. This may be

further extended in BV (Ω) with the characterization of B1
1,1(Ω), since bounded variation

space is best suited for gray–scale modeling.

Recently, a framework for building natural multiresolution structures on manifolds was

introduced by Coifman and Maggioni (2004), that greatly generalizes, among other things,

the construction of wavelets in Euclidean spaces. This allows the study of the manifold

and of functions on it at different scales, which are naturally induced by the geometry

of the manifold. Hence, concept of normal wavelets could be studied in the context of

natural multiresolution structures on manifolds.
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Appendix A

Test Images

(a) Original Image (b) Constructed Image 24.0047dB at 0.0107bpp

Figure A.1: Moon Image constructed using NMT Interpolation Scheme.
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(a) Original Image (b) 17.94dB at 0.01bpp

(c) Inset 25.0411dB at 0.17bpp (d) Inset 27.3778dB at 0.17bpp

Figure A.2: Cameraman Image constructed with NMT Interpolation (MQF).
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(a) 20.1dB at 0.45bpp JPEG2000 (b) 21.5dB at 0.05bpp GPP

Figure A.3: Cameraman Image constructed with JPEG2000 and Geometric Piecewise

Polynomial Approximation.
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(a) Original Image (b) 18.3dB at 0.01bpp MQF

(c) Inset 26.9404dB at 0.17bpp (d) Inset 29.2475 at 0.17bpp

Figure A.4: Leena Image constructed with NMT Interpolation (MQF).
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(a) 25dB at 0.02bpp JPEG2000 (b) 25dB at 0.02bpp GPP

Figure A.5: Lena Image constructed with JPEG2000 and Geometric Piecewise Polynomial

Approximation.
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