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Abstract This study emphasised on methods for analysis of 
categorical data having ordered categories for the multidimensional 
case and the paper discusses some of the specialized models 
which efficiently use the information on the ordering, unlike standard 
methods for nominal categorical data, for multidimensional 
variables In order to illustrate the methodology, three 
dimensional data from a shopping survey in Oxford was used 

The Standard nominal model fitted, represented the 
associations between the life cycle level, car availability and 
the agreement with the statement I find getting to grocery 
shops very tiring, with 16 degrees of freedom The model 
selected taking the ordinal nature of variables into account also 
represented the same associations with 27 degrees of freedom, 
thus with lesser number of parameters The standard log-linear 
model requires describing interactions using a number of 
parameters where as when ordinal nature of the variables is 
considered, interactions can be represented by a few parameters 

Based on the model which takes into consideration the 
ordinal nature of the variables the odds ratios to illustrate the 
association between the life cycle and agreement, disagreement, 
tendency to disagree, in-between, and tendency to agree with 
statement are 0 8, 0 4, 0 9 and 0 9 respectively The odds ratio 
that describes the association of the car availability and the 
agreement with the statement is 0 91 

It is established that ordering of categories utilizes the 
information reflected from data where as nominal models do 
not use the information in the ordered categories Also the 
suggested models have less parameters and are thus simpler 
and more parsimonious 

Key Words: Column effects model, Linear-by-lmear association model, 
Log-linear model, Ordinal categorical data, Row-effects model 

INTRODUCTION 

Statistical methodology to analyse categorical data has 
only recently reached the level of sophistication achieved 
early in this century by methodology for analysis of 

continuous data1 The recent development of methods 
for analysis of categorical data was stimulated by 
increasing methodological sophistication in the social and 
bio-medical sciences1 

In analyzing categorical data it is necessary to 
consider the scale of measurement and there are two mam 
types of scales of interest Nominal scale is the simplest 
scale of measurement which assumes that distinct levels 
differ in quality but not in quantity and ordinal scale 
considers the difference of distinct levels and even a 
hierarchy of importance 

Ordinal scales are pervasive in the social sciences, 
in particular, for measuring attitudes and opinions on 
various issues and states of various response types 
Besides they occur commonly m many diverse fields1 In 
many studies, ordinal variables are analyzed using nominal 
techniques assuming that results are invariant to 
permutations of the categories of any of the variables2 

This sacrifices a certain amount of information when the 
measurements are of ordinal scale Because of this, for 
many years in the past, researches have been carried out 
to extend the log-linear models to perform more complete 
and informative analysis for ordinal data It has been 
proposed that there are many advantages to be gained 
from using ordinal methods instead of, or in addition to 
the standard nominal procedures2 Ordinal methods 
represent two-way associations using a single parameter 
whereas in standard nominal case, summarization of tables 
is required As ordinal methods have lesser number of 
parameters compared to nominal models, they are more 
parsimonious and thus have rriore power to test the 
significance of the interaction terms in the log-linear model 
(Proof give in Annex 2) 

In this paper an attempt has been made to view the 
importance of utilizing the ordinal property of ordinal 
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variables in the analysis of categorical data and determine if 
any differences occur in the results obtained from these 
ordinal models when compared to standard categorical data 
techniques that treat all the variables as nominal. 

Application of these theories have been discussed 
by several authors12'3,4 only for two-way tables, where as 
in this paper attention is paid to application of these 
theories to the multi-dimensional case. In order to 
demonstrate the usage of orderings of categories, data 
from a Shopping Survey in Oxford5 was used. There were 
three variables of interest namely, the life cycle levels, car 
availability and the agreement with the statement 'Ifind 
getting to grocery shops very tiring. Section three 
provides a description of the levels of each of these three 
variables. This three dimensional example can easily be 
generalized to the multidimensional case. 

The objectives ofthis study were to explore the advantages 
of considering the ordering of levels of categorical variables 
with respect to: 

i. Obtaining simpler models which are easily interpretable 

ii. Providing easier quantification of associations 

iii. Improving the power to test the significance of the 

interaction terms in the log-linear model 

Section 2 ofthis paper introduces the theory behind 
the methods used for the study and section 3 provides 
an illustration using an example. Section 4 discusses the 
results and draws conclusions. Annex 1 provides some 
vital proofs and tables required to understand the usage 
of considering the ordinal nature of variables and Annex 2 
gives a proof that ordinal models have more power to 
detect interactions when compared to nominal models. 

METHODS AND MATERIALS 

The main aspect of this study was to explore the 
advantages of considering the ordering of levels of 
categorical variables. 

In order to visualize the above mentioned advantages 
it is necessary that the data is analyzed in both ways, by 
treating levels as nominal and by considering the natural 
orderings of the levels. 

The models that were used in the analysis were as follows. 

a. Standard log-linear model6. 

b. Linear-by-Linear Association in Two-Way Tables2. 

c. Row Effects Model2. 
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Standard Log-Linear Model5: The form of the log-linear 
model under the null hypothesis, H0: Independence of 
two variables X and Y for the simplest case of two binary 
variables in the case of a I x J contingency table is 

loge (ej = tx + kx+ kY; i= I ..., land] = /, ...J (1) 

where 

H denotes the overall mean, kf denotes the effect of ith 

level ofX, and A Ydenotes the effect off1 level ofY. e is the 
expected value of the cell formed by the ith level ofX and 
thef level of Y. 

and the saturated model2 is 

hgje^p + kf+kf + kf*;^! / and j = J, ...,/ (2) 

Here the terms with two subscripts pertain to partial 
associations between the corresponding variables. For 
the standard log-linear model, independence is given by 
the null hypothesis HQ: kXY=0for all 1 = 1,..., I and] =1, ...,J. 

The likelihood ratio test statistic for testing H0i$LR = G2 - G2
2. 

The notation G2 denotes the deviance of model k where 
k 

k=l, 2. Under H0, Z^has an asymptotic chi-square 
distribution with (1-1) (J-l) degrees of freedom. This result 
can be used to test HQ. 

Linear-by-linear association in two-way tables2: For two-
way tables one rarely expects the independence model to 
fit well. For a model to have much scope it must allow 
association, yet retain some residual degrees of freedom, 
that is, it nests between the independence model and the 
saturated model. The linear-by-linear model is a simple model 
ofthis type for association between two ordinal variables. 

The model requires assigning scores {w}and {v}to 
the rows and columns. To reflect category orderings we 
take u}^u2<, u and v ^ v2^ v . It is then possible 
rather than going directly to the fully saturated model to 
explore the model which has an interaction structure that 
directly reflects the ordering of the rows and columns 
and of the scores {w}and {v}. 

The linear-by-linear association model is then 

loge(eif) = fi + kf+ AF.+ £« v ; i = l, ...Iandj = l, ... J (3) 

Where e is the expected value for the cell made up by the 
** row and 7 th column, \i represents the overall mean 
effect, kf represents the effect of the ith level of the variable 
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X, A Y represents the effect of they* level of the variable Y. 
Parameter fi describes the association between X and Y. 
Values u and v are the known scores assigned to the 
rows and columns. Often the above model is taken as, 

logjej = fi + kf+k/+!3(u-u) (vrv) (4) 

which is known as the centered model 

The independence model is a special case when 
P = 0. Since {w}and {v}are fixed the linear-by-linear 
association model has only one more parameter (ft) than 
the independence model. Thus the degrees of freedom 
for the linear-by-linear association model are 

df=IJ-[l + (l-l) + (J-l) + 1]=IJ-I-J 

Note that model (3) is unsaturated for tables with J>2. It 
is a special case of the saturated model (2), in which kXY 

takes the form fiui v. While the linear-by-linear association 
model requires one parameter (fi) to describe association 
regardless of/and Jthe saturated model requires (1-1)(J-1) 
parameters. In many applications the choice of scores 
will reflect assumed distances between midpoints of 
categories for an underlying interval scale. Equally spaced 
scores result in the simplest interpretation for the model 
discussed in this section. In practice, the integer scores 
{u = z'}and { v =y}are most commonly used. 

Row effects model2: Here the row variable (X) is treated 
as nominal and column variable (Y) as ordinal. The model 
is appropriate for two-way tables with ordered column 
classifications. The ordered scores v <• v2<, vyare 
assigned to reflect the ordering of the columns. The rows 
are now unordered (nominal). Using the linear-by-linear 
structure as before and replacing the ordered values {//} in 
the linear-by-linear association model by the unordered 
parameters gives the row effects model 

tog/^ = /i + V + A / + ^ v (5) 

The degrees of freedom for this model is of = total 
cells - number of independent parameters = (I-l)(J-2) 

Direct ordinal test of independence: For the linear-by-
linear association model, independence is given by the 
null hypothesis H: 13 = 0. The likelihood ratio test statistic 
for testing H0 is, G2(lfLxL) = G2 (I) -G2(LxL). The 
notation G2 (I) represents the deviance of the standard 
nominal model and G2 (L xL) represents the deviance of 
the linear-by-linear model. The likelihood ratio statistics 
G2(IJL xL) is the difference of these two deviances and 
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measures to what extent the nominal model is a better fit 
compared to the linear-by-linear model. When the L x L 
model holds, the ordinal test using G2 (1JL x L) is 
asymptotically more powerful than the test using G2 (I) 
(Proof give in Annex 2). The power of a chi-squared test 
increases when degree of freedom decreases, for fixed 
non-centrality. When the L x L model holds, the non-
centrality is the same for [G2 (I JL xL)J and G2 (I). Thus, 
G2(lJLx L) is more powerful. 

Likelihood Equations and Model Fitting: The Poisson 

log-likelihood L(6)^ II nt loget - II e simplifies for 

the L xL model loge (et) = \i + kf + A Y + ft uy to 

L(6)=nu + I n k x +1 nkY+/3II u v n -
x ~ / r i i+ i i +j j * i j i j ij 

1% exp (pi +k?+kY+f}uy) (6) 

Here8 is the parameter vector (kf kf, kf kf, ft). 

Differentiating L(Q) with respect to (kf, k Y, fi) for i = !,...!, 

j = 7,... J and setting the three partial derivatives equal 

to zero yields likelihood equations 

et+ = n+ ; i = 7, ..., I ...(7) 

e^-n+j ;j-l...,J ...(8) 

II uv e = II uvn ...(9) 
i J i J V i 1 i J 'J y / 

Where a (+) sign corresponds to summing over the 
corresponding suffix and a hat sign (A) corresponds to 
the maximum likelihood (ML) estimate. 

Iterative methods such as Newton-Raphson yield the ML fit. 

Letz? = n and it = e 

n n 

The third likelihood equation {equation (9)} implies that 

II uv ii =IIuvp ...(10) 

Since marginal distributions and marginal means and 
variances are identical for fitted and observed 
distributions, the equation (9) implies that the correlation 
between the scores for X and Y is the same for both 
distributions. The fitted counts display the same positive 
or negative trend as the data. 

Since {uf and {v} are fixed, the L x L model 
log (e ) = [i + kx + kY + p uv has only one more 
parameter (/3) than the independence model. Its residual 
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df= IJ- I-Jis unsaturated for all other tables except for 
2 x 2 tables. 

Ordinal variables in models for multi-way tables: 
Generalizations of association models can be used for 
multidimensional tables with ordinal responses. In three 
dimensions, the rich collection of models includes 

1. association models that are more parsimonious than 
the nominal model (XY, XZ, YZ). 

2. models permitting heterogeneous association that, 
unlike model (XYZ), are unsaturated. 

Models for association that are special cases of (XY, 
XZ, YZ) replace A association terms by structured terms that 
account for ordinality. For instance, when bothXand Fare 
ordinal, alternatives to A M are a linear-by-linear term f$ uy, 
a row effects term a v, or a column effects term u A; these 
provide a stochastic ordering of conditional distributions 
within rows and columns, or just within rows, or just 
within columns. With a linear-by-linear term the model is, 

log^H + kf + kf+kf+Puy^ kfz+kf* ...(11) 

i = 1, ...,/; j = l, ...,J; k = l, ...,K 

The conditional odds ratio 6 ., then satisfies 

lo%e dm = P Ki - UJ (VJ+I - vj)f°r ail k 

The u s and v 's are as defined before. 
' J 

The association is the same in different partial tables, 
with homogeneous linear-by-linear XY association. When 
the association is heterogeneous, structured terms for 
ordinal variables make effects simpler to interpret than in 
the saturated model. For instance, the heterogeneous 
linear-by-linear association XY model 

^ = M + ¥ + A / + A/ + ftMv + A - + A t - ...(12) 

allows the XY association to change across levels of Z. 
With unit-spaced scores, 

loge 0ij(k) = pk for all i and] 

It has uniform association within each level of Z, but 
heterogeneity among levels of Z in the strength of 
association. Fitting it corresponds to fitting the L x L 
model separately at each level of Z. 

3. An example 

In order to illustrate the methodology, data from a 
Shopping Survey in Oxford4 was used. Three ordinal 
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variables were considered for the illustration and those were 
life cycle levels, car availability, and agreement with the 
statement 7 find getting to grocery shops very tiring1. The 
variable life cycle levels has three levels as middle-aged, 
younger people with children and younger people without 
children. The variable car availability also has three levels 
as no car availability, some car availability and full car 
availability. The third variable has five levels as disagree, 
tend to disagree, in between, tend to agree, and agree. 

In order to visualize the advantages of considering 
the natural ordering of variables, first the standard log-
linear model was obtained using the forward selection 
technique2. SAS PROC CATMOD was used to obtain the 
standard log-linear model and PROC GENMOD was used 
when ordinal nature is considered. The respective 
constraints for these procedures were sum of parameters 
equals zero and parameter for last level equals zero. 

The selected standard nominal model to represent the 
associations was as follows. 

Model A 

loge (eyk) = const + (life)i + (car)j + (agree)k + 

(car*agree) k + (life*agree)ik + (life*car)t ... (13) 

Using the likelihood ratios, goodness of fit of the above 
model was assessed. The corresponding hypothesis is; 

HQ: Selected model represents associations well enough 

vs 

H: Selected model does not represent associations well 
enough 

The deviance of the chosen model is 24.2046. Under 
HQ the deviance has an asymptotic chi-square distribution 
with 16 degrees of freedom. Since the calculated deviance 
is less than x2

16 5o/o(
= 26.2962), the null hypothesis of 

well fitted model should not be rejected at 5% significance 
level. The p-value of the selected model when compared 
with the saturated model is 0.0851 which implied that the 
chosen model represent the associations well. Hence the 
best standard log-linear model to represent the 
associations between the variables life cycle levels, car 
availability and agreement with the statement was taken 
to be model A. 

It is clear from the selected standard log-linear model that 
all variables (car availability, life cycle levels, and agreement 
with the statement) are associated. However these 
associations do not change with the level of the third variable. 
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After obtaining a model to represent the associations 
between the variables by ignoring the natural orderings 
of the variables it is of interest to fit a model which utilizes 
the natural orderings of the variables. 

As the backward elimination procedure2 is to be 
used in selecting the most representative model by utilizing 
the natural orderings of the variables, the model fitting 
was started by taking the selected standard model into 
account. The strategy adopted in model selection was to 
first examine whether any nominal terms can be replaced 
by linear by linear interaction terms and second to examine 
whether remaining nominal terms can be replaced by row-
effect or column-effect terms. In doing this two things are 
considered. 

Initially the term resulting in the largest p-value 
(>0.05) for the difference in deviance is selected and 
then the goodness of fit ofthis selected model is examined 
(using p-value). Only if both the p-values of the difference 
in deviance and goodness of fit are not significant (>0.05) 
is the relevant term selected. 

The notation sffe = i represents the scores associated 
with the variable life(life cycle) when treated as linear, 
ucar = j represents the scores associated with the 
variable car(car availability) when treated as linear and 
v agree = fc represents variable agree(agreement with the 
statement) when treated as linear. 

When the deviance increments with respect to model A 
were considered it was seen that, the model in which both 
the variables car and agree were treated as linear resulted 
in the largest p-value (0.1502) and is greater than 0.05. 
Thus it is possible to treat both variables in the term 
car * agree in model (12) as linear. The p-value of the model 
for the goodness of fit is 0.053 which is marginally higher 
than 0.05. This shows that while the fit of the model is not 
excellent it is adequate. 

Model B: 

log^ (eijk) = const + (life). + (car). + (agree)k + [(ufar * 

v agr*)] + (life*agree) ik + (life*car).. ...(14) 

Selection of linear-by-linear interaction term(s):VJYi$n 
considering model A it is clear that the first two-factor 
interaction term that was chosen to be treated as linear 
was car*agree. It was found that both these ordinal 
variables could be treated as linear without making any 
significant changes to the goodness of fit of the 
selected standard log-linear model. The results 
obtained in each of the cases are tabulated in table 3.1. 

Then the next two-way interaction terms were treated 
as linear-by-linear terms and the results are summarized 
in table 3.2. 

It is revealed from the Table 3.2 that the largest 
p-value corresponding to the difference is 0.0894 in model 
in which both variables life(life cycle) and agree 
(agreement with the statement) are treated as linear. This 

Table 3.1: Summary statistics obtained by treating each of the interactions linear in model A 

Model Deviance Degree of 

freedom 

Difference with 

model A 

p-Value of 

difference 

Deviance DF 

Model A 24.2046 16 

tog (e
l]k)

 = const + (lifflt + (car)j + (agree)k 

+ (ucar * vk
agree) + (life*agree).k + (life*car)r 34.9491 23 

l% (etjk) = const + (lifeh + (carh + (a8ree)k 

+ (car. *agreej + (s^* v^ee) + (life*car)tj 35.8763 23 

10.7445 7 0.1502 

11.6717 7 0.1119 

bg^ (ei]k) = const + (life)t + (carf + (agree)k 

+ (car. *agreek) + (life*agree)tk + (sfe* ucar) 36.4599 19 12.2553 3 0.0066 

• Deviance increment not significant at 5% level 
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Table 3.2: Summary statistics obtained by treating each of the interactions linear in model B 

Model Deviance 

freedom 

Degree of Difference with p-Value of 

model B difference 

Deviance DF 

Model B 

logg (ei>k) = const + (life)i + (carf + (agree)k 

+ (umr * vk
agree) + (sl

t
lfe* vk

agree) + (life*car)i 

lo%e (eyk) = const + (lifeK + (car)}
 + (asree)k 

+ (ueer * v^ree) + (life*agree)tk + (sj** ucar) 

34.9491 

47.3077 

47.5162 

23 

30 

26 

12.3586* 7 0.0894 

12.5671 3 0.0057 

Deviance increment not significant at 5% level 

Table 3.3: Summary statistics obtained by treating each of the interactions row-effects/column-effects in model B 

Model Deviance Degree of 

freedom 

Difference with p-Value of 

model A difference 

Deviance DF 

Model B 

log^ (eijk) = const + (life)i + (car)f + (agree)k 

+ (ufr * vk
agree) + (sfe "agree) + (life*car)t 

log^ (etjk) = const + (life)i + (car)j + (agree)k 

+ (ufar * vk
agree) + (lifef vk

agree) + (life*car) 

log^ (eijk) = const + (life)x + (car)j + (agree)k 

+ (ucar * vk
agree) + (life*agree)jk + fs/'/e *car > 

fc>£ f «V>> = COflSt + ^ A + (carh + (a%reehs 

+ (wCflr * v / ^ e j + (life*agree)ik + (lifei *ucar) 

34.9491 

39.2052 

43.5848 

44.3399 

39.3906 

23 

27 4.2561 0.3725 

29 8.6357 6 0.1951 

25 9.3908 2 0.0091 

25 4.4415 2 0.1085 

- Deviance increment not significant at 5% level 

value is greater than 0.05 and thus the model is not 
significantly different from model B. But it is to be noticed 
that the goodness of fit p-value ofthis model is 0.0232 
which implies that the model does not fit well. Thus this 
model was not chosen. 

Thus it was concluded that the only linear-by-linear 
term that could be included in the model is (ucar * vfgree). 

Selection of row-effects/column effects interaction term(s): 
After selecting the linear-by-linear terms, it was attempted 
to make other two-way interaction terms row-effects/column-
effects by using the same strategy used in the above section. 

The two-way interaction terms life*agree and life*car 
were treated as row-effects and column-effects terms 
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respectively and the results are summarized Table 
3.3.)Table 3.3 reveals that the largest p-value 
corresponding to deviance difference is 0.3725 which is 
greater than 0.05. This is when variable lifeflife cycle) is 
treated as linear and variable agree(agreement with the 
statement) is treated as factor in the two-factor interaction 
life*agree. Thus it could be concluded that two-way 
interaction life*agree could be treated as row-effects term. 
When the goodness of fit p-value of the model (=0.0607) 
is considered it is clear that this model fits well at 5% 
significance level. Thus the selected model is as follows. 

Model C: 

loge (eijk) = const + (life)j + (car)j + (agree)k + (ucar * 

v agree) + (sW*agreej + (Ufe*car) tj ...(15) 

The similar procedure was applied to obtain more 
row-effects/column-effects terms and the results are 
summarized in Table 3.4. 

The largest p-value corresponding to deviance 
difference is 0.1088 which is greater than 0.05. Thus the 
model is not significantly different from model C. But when 
the goodness of fit of the model is considered it is seen 
that this model does not fit well as the p-value 
corresponding to the model 0.0397 is less than 0.05. Thus 
this model is not selected and it is concluded that model C 
is the best model obtained by taking the natural orderings 
of the variables into account. 

When referring the model C it could be seen that the 

model C is a combination of a linear-by-linear association 

term (ucar * vk
agree), a row-effects term (si

hfe*agreefc) and 

two-way nominal interaction term between (life*car ) . 

After selecting the model, it is necessary to assess 
the goodness of fit of the selected model. The following 
hypothesis is used for this. 

HQ: Selected model represents associations well enough 

vs 

H}: Selected model does not represent associations well 

enough 

The deviance of the selected model is 39.2052 with 
27 degrees of freedom. This value is compared with the 
corresponding chi-square table valuex2

27 5%(= 40.1133) 
And it is seen that the value of the deviance of the 
chosen model is less than the corresponding chi-square 
table value. Also the p-value of the selected model is 
0.0607 (> 0.05) which implied that the chosen model 
represents associations well. Thus it is possible to 
conclude at the 5% significance level that there is no 
sufficient evidence to say that the chosen model does 
not fit well enough. Hence the best model to represent the 
associations between factors life cycle level, car 
availability, and agreement with the statement 'I find 
getting to grocery shops very tiring' after considering the 
natural orderings of the appropriate variables is model C. 

Also it is necessary that the selected model does not 
deviate significantly from the standard log-linear model. 
Thus a comparison of the standard log-linear model and 
the combination model obtained by considering the 
natural ordering were compared. 

Table: 3.4 - Summary statistics obtained by treating each of the interactions row-effects/column-effects in model C 

Model Deviance Degree of 

freedom 

Difference with 

model B 

p-Value of 

difference 

Deviance DF 

Model C 39.2052 27 

log (et ) = const + (life) + (car) + (agree)k 47.3058 

+ (ucar * vk
agree) + (s}/e *agreek) + (sjlfe * car ) 

29 8.1006 2 0.0175 

loge (ei/k) = const + (life)t + (car)j + (agree)k 

+ (ucar * vk
asree) + (sl

(
lfe *agreej + (lifet * ucar) 43.6409 29 4.4357* 2 0.1088 

*- Deviance increment not significant at 5% level 
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The standard log-linear model obtained in this paper is as 
follows. 

Model A: 

H0: There is no difference between the two models 

vs 
Hf There is a difference between the two models 

loge (e.jk) = const + (life). + (car). + (agree)k + 

(car*agree) k + (life*agree)ik + (life*car) .. 

The combination model obtained in this paper by 
considering the ordinal property of the appropriate 
variables is as follows. 

Model C: 

loge (e.jk) = const + (life). + (car). + (agree)k 

+ (ucar * v^ree) + (sffe*agreek) + (life*car).. 

To assess whether the consideration of natural orderings 
of variables increase the deviance of the standard log-
linear model, comparison of the model A and model C was 
done and the results are tabulated in table 3.5. 

It is also known that this deviance increment follows 
an asymptotic chi-square distribution and thus the 
corresponding table value x2

1} m(= 19.6751) is used to 
assess the following hypothesis. 

As the deviance increment due to consideration of 
linearity of possible variables (=15.0006) is less than the 
corresponding chi-square table value y?u 5%(= 19.6751), 
it is concluded at 5% significance level not to reject the 
null hypothesis. Thus it could be concluded at 5% 
significance level that there is no sufficient evidence to 
say that the two models are significantly different with 
respect to the fit. Hence it is possible to select the model C 
which had higher number of degrees of freedom and thus 
a simpler model. The whole idea behind this paper is to 
utilize information revealed by the natural orderings of 
the variables. And it was discovered that by considering 
the natural ordering of the variables, it is possible to save 
11 degrees of freedom and could thus obtain a simpler 
model compared to the standard log-linear model. 

Parameter estimation, odds ratio calculation and model 
interpretation: After selecting the model the interest is 
then to interpret the model using the parameter estimates 
and appropriate odds ratios. For two-way interactions 
where both the variables are treated as factors, it is 
attempted to look at the estimated parameters for a better 
interpretation. 

Table 3.5: Summary statistics obtained in comparing model A with model C 

Model Deviance 

24.2046 

39.2052 

Degree of 

freedom 

16 

27 

Difference with 

model 1 

Deviance DF 

15.0006* 11 

p-Value of 

difference 

0.1825 

Model A 

Model C 

Deviance increment not significant at 5% level 

Table 3.6: Parameter estimates of two-factor association life cycle levels & car availability . 

Car Availability No car availability 

Some car availability 

Full car availability 

Middle 

aged 

0.1475 

0.5022 

0.0000 

Life cycle levels 

(younger people) 

with children 

-0.4621 

0.1509 

0.0000 

(younger people) 

without children 

0.0000 

0.0000 

0.0000 
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It is seen that middle-aged people had a high chance 
to have some car availability compared to younger people 
without children. Also the chance of having no car 
availability for younger people with children is lower than 
the younger people without children. 

To interpret the associations with linear effects 
relative odds ratios are calculated and have been explained 
below. As in the two-way interaction life*agree, it is found 
that variable life behaves linearly and the corresponding 
odds ratio is obtained for this case. 

The estimates corresponding to first four levels of 
the agreement with the statement with respect to the 
respondents who had agreed with the statement are 
agree j = 0.2316, agree2 = 0.8061, agree3 = 0.0092 and 
agree ~ 0.1273. The further agreet falls in the positive 
direction, the greater the tendency for the respondents 
with level of agreement i to locate at the maximum life 
cycle level (i.e: younger people without children) relative 
to respondents who have agreed to the statement. In this 
case younger people without children have disagree with 
the statement 'I find getting to grocery shops very tiring' 
than the younger people with children and middle-aged 
people. 

The derivation of the estimated odds ratios are given 
in the Annex 1. All estimated log odds ratios are negative 
indicating a tendency for middle aged people to agree 
with the statement. 

When k=l; 

The estimated odds that a respondent who has agreed 
with the statement being younger person without children 
instead of younger person with children, or being younger 
person with children instead of middle-aged, are 0.8 times 
{exp(-0.2316) = 0.7933} the corresponding estimated 
odds for a respondent who has disagreed with the 
statement. The 95% confidence interval is (0.6274, 
1.0030). As one is included in the confidence interval, 
null hypothesis 6 = 1 is not rejected. This indicates that 
there is no difference in odds, of being younger person 
without children instead of younger person with children, 
or being younger person with children instead of middle-
aged, between respondents who have agreed and 
disagreed with the statement. 

However here the upper limit is only just above one 
and therefore the result is nearly significant Thus, it could 
be concluded that the estimated odds that a respondent 
who finds getting to grocery shops very tiring being 
younger person without children instead of younger 
person with children, or being younger person with 
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children instead of middle-aged is around 0.8 times less 
compared to a respondent who does not find getting to 
grocery shops very tiring. 

When k=2; 

The estimated odds that a respondent who has agreed 
with the statement being younger person without children 
instead of younger person with children, or being younger 
person with children instead of middle-aged, are 0.4 times 
{exp(~0.8061) - 0.4466} the corresponding estimated 
odds for a respondent who has tend to disagreed with 
the statement. The 95% confidence interval is (0.2773, 
0.7194). As one is not included in the confidence interval, 
null hypothesis 6 = 1 is rejected. Thus the confidence 
interval supports the conclusions taken using odds ratio. 
Thus it is concluded that the estimated odds that a 
respondent who finds getting to grocery shops very tiring 
being younger person without children instead of younger 
person with children, or being younger person with 
children instead of middle-aged is less (0.4 times) 
comparatively to a respondent who does not tend to find 
getting to grocery shops very tiring. 

When k=3; 

The estimated odds that a respondent who has agreed 
with the statement being younger person without children 
instead of younger person with children, or being younger 
person with children instead of middle-aged, are 0.9 times 
{exp(-0.0092) = 0.9908} the corresponding estimated 
odds for a respondent who has responds (agreed) in-
between with the statement. The 95% confidence interval 
is (0.6756, 1.4532). As one is included in the confidence 
interval, null hypothesis 6 = 1 is not rejected. This 
indicates that there is no difference in odds of being a 
younger person without children instead of younger 
person with children or being younger person with 
children instead of middle-aged between respondents 
who have agreed and are in-between. 

When k=4; 

The estimated odds that a respondent who has agreed 
with the statement being younger person without children 
instead of younger person with children, or being younger 
person with children instead of middle-aged, are 0.9 times 
{exp(-0.1273) = 0.8805} the corresponding estimated 
odds for a respondent who has tend to agree with the 
statement. The 95% confidence interval is (0.5978, 
1.2967). As one is included in the confidence interval, 
null hypothesis 6 = 1 is not rejected. The interpretation is 
similar to k=3. 
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Also it is found that both the variables in the two-
way interaction term car*agree where car represents the 
car availability and agree represents the agreement with 
the statement, could be treated as linear. Thus the selected 
term is a linear-by-linear term and the information reflected 
from this term could be interpreted as follows. 

The ML estimate fi = -0.0950 (negative) indicates 
that the respondents having higher car availability tend 
to disagree more with the statement 7 find getting to 
grocery shops very tiring'. 

The corresponding odds ratio is; 

6ik(j) = exp (ft) = exp (-0.0950) - 0.9094 

Thus the estimated odds that a respondent agreeing with 
the statement (who finds getting to grocery shops very 
tiring) having full car availability instead having some car 
availability, or having some car availability instead of no 
car availability is approximately 0.9 times {exp (-0.0950) 
= 0.9094} the corresponding estimated odds for a 
respondent who does not find getting to grocery shops 
very tiring. The 95% confidence interval is (0.8615, 
0.9599) which does not include 1. Thus the null 
hypothesis 6 = 1 is rejected and hence it is seen that the 
confidence interval supports the conclusions taken using 
the odds ratio. 

Thus it could be concluded that respondents do not 
find getting to grocery shops tiring with increasing car 
availability. 

DISCUSSION 

The main objective of this paper was to discuss the 
advantages of using the natural orderings of ordinal 
categorical variables. It was of particular interest to 
illustrate that models which use the natural orderings are 
simpler, provide easier quantification of associations in 
terms of odds ratios and have more power to detect 
interactions when compared to models which use nominal 
scale variables. A three-dimensional example was used 
for illustration. 

A standard log-linear model was chosen to explore 
the associations among life cycle levels, car availability, 
and agreement with the statement '1 find getting to grocery 
shops very tiring' by considering the variables to be of 
nominal scale. 

Then the model was chosen by taking the natural 
orderings of the variable into account. In this case it was 
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found that in the association between car and agree, both 
variables car and agree could be treated as linear variables 
than factors. And also in the association between life and 
agree, variable life could be treated as continuous. This 
reduced the number of parameters corresponding to each 
of the interactions. Due to this parameter reduction the 
degrees of freedom corresponding to the model was 
increased (by 11) and thus it was possible to obtain a 
more parsimonious model with much simpler 
interpretations. 

Estimated odds showed that, respondents with higher 
car availability do not find getting to grocery shops very 
tiring and thus tends to disagree with the statement 7 
find getting to grocery shops very tiring'. 

Also respondents who have agreed with the 
statement being younger persons without children 
instead of younger persons with children, or being 
younger persons with children instead of being middle-
aged, are 0.4 times {exp(-0.8061) = 0.4466} the 
corresponding estimated odds for a respondent who 
tends to disagree with the statement. 

It was clear from the analysis that the suggested 
model tests the associations with 27 degrees of freedom 
where as standard log-linear model tests the same 
associations only with 16 degrees of freedom. Thus the 
number of parameters used to interpret the associations 
in the suggested model is less than in the standard log-
linear model, illustrating that the suggested model is 
simpler. Though standard log-linear models require 2x2 
sub-tables to describe the interactions, the suggested 
model can be easily utilized to calculate odds ratios (Annex 1) 
to describe the similar interactions. As shown in Annex 2 
the power for testing associations is higher in the 
suggested model. 

Throughout this paper an illustration of methods of 
selection of terms, deciding the form of the terms and 
interpreting terms have been studied for the three 
dimensional case. This could be easily generalized, using 
the same approach for the multi dimensional case. This 
work could further be extended by examining the 
magnitude of increase in power of the likelihood-ratio tests, 
when the ordinal nature of the categorical variables is 
utilized, by using simulation studies. 
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Annex 1 

The derivation of the estimated odds ratios; 

KAV,;W*0V)]" l°Se(Oik(/j) = loge 

y^(i+i),kl (^i/fk+iy 

= l°gM,+1)}(k+I))+
losMjk)~

 lose^(l+!)lk-^g^ij(k+l) 

By substituting the values; 

l°g0,J=\ 

/•[const + (life)(i+l) + (car)j + (agree) m) + \ 

(life*car)(i+I)+((i+l) *agree)(k+l)+ ((i+1) *j)] + 

[const + (life) + (car) + (agree) k + 

(life*car)if + (i*agree)k + (i*j)] -

[const + (life)0+J)+ (car)} + (agree) h + 

(life*car)(t+t)+ ((i+l)*agree)k+((i+l)*})] -

[const + (life)i + (car)j + (agree) ^ 

\(life*car)y + (i*agree)(k+I) + (/*/;)] 

Thus; 

l°2l& w) = i((HV*agree)(k+!)+(i* agree)k-

((i+l)*agree)k- (i*agree)(k+1) } 

= (agree)k+1 - (agree)k 

100(1 - a)% confidence interval for the above is; 

= exp [logjid ik0)) ±{Za/2 * V(vHloge(0ltO))))}l 

Thus when k=l; 

loge(Qlk0)) = {(agree) (k^-(agree\} 

= [0.0000-(0.2316)] 

= -0.2316 

5. Bowly S. & Silk J. (1982). Analysis of qualitative data 
using GLM: two examples based on shopping survey data. 
The Professional Geographer 34: 80-90. 

6. Dobson A.J. (2002). An Introduction to Generalized Linear 
Models, Second Edition, Chapman and Hall. 

7. PatnaikP.B.(1949).TheNon-Centralx2and F distributions 
and their applications. Bwmetrika 36: 202-232. 

To assess the 95% confidence interval; 

var {loge(B [k(/))} = var(agree(k+!)) + var(agree) -

[2*cov (agree k+1, agree)] 

= 0 + 0.0143 - (2*0) = 0.0143 

Thus 95% confidence interval is; 

=exp[bge(6ik(j))± {Za/Vvzr(loge(eik(j)))}] 

=exp [-0.2316 ± (1.96 * V(0.0143))] 

= exp [-0.2316 ±0.2346] 

= exp [-0.4662, 0.0030] 

= (0.6274,1.0030) 

When k=2; 

l°ge(QJ= {(agree^^agreel} = [0.0000-(0.8061)] 

= - 0.8061 

Thus 95% confidence interval is; 

= exp Uoge(6ik(j)) ± {Za/2 * V(var (loge(6lk(j))))}] 

= exp [-0.8061 ± (1.96 * 0.2432)]= exp [-0.8061 ± 0.4767] 

= exp [-1.2828, -0.3294] = (0.2773, 0.7194) 

When k=3; 

lo^lk0)) = {(agree)^ - (agree\} 

= [0.0000-(0.0092)] = - 0.0092 

Thus 95% confidence interval is; 

= ™P Voge(Oik0)) ± {Z^ * A^(loge(6 ik(j)))}] 

= exp [-0.0092 ± (L96 * 0.1954)] 

= exp [-0.0092 ± 0.3830] = (0.6756,1.4532) 
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When k=4; 

^ge(B!k(!) = {(agree)(k+}} - (agree\} 

= {0.0000 - (0.1273)} = - 0.1273 

Thus 95% confidence interval is; 

= ^P [loge(0ik(j) ± {Z^ * V(var(loge(dik(j))))}] 

= exp [-0.1273 ± (1.96 * 0.1975)] 

= exp [-0.0092 ± 0.3871] = (0.6728,1.4592) 

Annex 2 

The power of a test is defined to be the probability of 
rejecting the null hypothesis given that the alternative 
hypothesis is true. 

It is denoted by 

1 - (3 = Pr (rejecting HQ /H1 is true) 

For simplicity consider the two dimensional case 
where variables X and Y are ordinal categorical variables 
with levels I and J respectively. Consider the three models 

log(ei)=fx+?ii
x+kr (model of independence)... (i) 

log (ei)=iA,+k*+'k Y+Xt
 XY (fully saturated model)... (ii) 

log (e )—{i+?ix+?iy+f3uv (linear by linear association model)..(Hi) 

The notation in the models is as defined before. 
Suppose the three models have deviances Dr D2 = 0, 

andD3 respectively. The degrees of freedom of the models 
are v} =1J-1-J+ 1, v2 = 0, v3 =1J-1-J respectively. 
The power with which to detect the association between 
X and Y when such an association is present: 

Based on the nominal log-linear model (ii) is given by 

Power} = Pr(DI-D2 > x \ fa™*0) ... (iv) 

Based on the log-linear model taking the ordering in to 
account (iii) is given by 

Power2=Pr(DrD3>tfyi_yi = 1/p-0) ... (v) 

Now DD} =D}-D2 and DD2 =D}~D3 have non-
central chi-square distributions with degrees of freedom 
v and 1 respectively and non-centrality parameter d} and 
^respectively7. 

When the linear-by-linear model (model (Hi)} holds 

S} = 62^5!'2 

ThcnDDrX
2
(Vpd) 

The power of a chi-squared test increases when 
degrees of freedom decreases for fixed non-centrality1,2. 
As v > 1 for all other cases except for the 2x 2 table, 
Power2 {given in equation (v)} is larger than power2 {given 
in equation (iv)} for all other cases except I-J- 2. Thus 
when the linear-by-linear model holds the ordinal test using 
(^(l/LxL) (given in equation (v)} is more powerful than 
the test using &(!) {given in equation (iv)}. 
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