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Abstract: Cox proportional hazards (PH) model is one of the 
finest techniques in identifying combined effects of several 
covariates on the relative risk (hazard). This model assumes 
that the hazards of the different strata formed by the levels of 
the covariates are proportional. The primary objective of this 
paper is to illustrate the usefulness of a global goodness-of-
fit test proposed by Schoenfeld for testing the PH assumption. 
Though several classical methods have been discussed in 
previous studies there is no one research paper that compares 
Schoenfeld’s method with these. Moreover, programmes 
are developed in SAS for constructing this global goodness-
of-fit test. In this paper the proposed test is applied to a real, 
large scale data set that involves several covariates, whereas 
Schoenfeld has used only a small data set with only one 
covariate to illustrate this new test. 

	 Using Kaplan-Meier curves, a preliminary analysis was 
conducted on the survival data. Then, a Cox PH model was fitted 
to the data. All the methods and residual analysis including the 
global goodness-of-fit test indicated that for the data set used 
the assumption of PH is violated. However, other than for the 
global goodness-of-fit test all other techniques are based on 
graphical methods and are thus subjective. Hence, for cases 
where the violation of the PH assumption is marginal these 
graphical methods may be inadequate to detect this departure. 
However, as the global goodness-of-fit test is an objective test 
it is recommended as the best among the methods compared. 

Keywords: Cox proportional hazards model, Cox-Snell 
residuals, goodness-of-fit, residual analysis, Schoenfeld 
residuals. 

INTRODUCTION

In the comparison of two survival functions in a clinical 
trial, it is useful to have a means to measure the difference 
between the two survival curves. If the corresponding 
hazard functions are proportional, then the interpretation 
of relative risk (hazard) can be done using the maximum 
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partial likelihood estimator proposed by Cox1. The 
descriptive method of identifying proportionality of 
hazards for levels of a single covariate involves the 
plotting of Kaplan-Meier estimates. However, this simple 
method is cumbersome when there are many covariates. 
Thus, the estimation of relative risk for a group of subjects 
depending on several explanatory variables (covariates 
which can be categorical or continuous) is assessed by a 
parametric fitting of a proportional hazard (PH) model1.
 
	 After fitting an appropriate PH model for the given 
data, it is vital to check the goodness-of-fit and the 
residuals of the fitted model. The goodness-of-fit of a 
PH model mainly focuses on checking the validity of the 
assumption of the proportional hazards (i.e. whether the 
effects of covariates on risk remain constant over time). 
For a more general Cox’s regression model, the PH 
property is one of the restrictions to using the model with 
time-fixed covariates. It assumes that the hazard ratio 
between two sets of covariates is constant over time, 
because the common baseline hazard function cancels 
out in the ratio of the two hazards. However, the impact 
of time-varying covariates leads the hazard to vary 
over time, thus violating the assumption of PH in the 
model. To test this PH assumption of Cox’s regression 
model, Schoenfeld2 and Moreaue et al.3 introduced a 
dummy time-dependent covariate. There, the observed 
numbers of events in the cells arising from a partition of 
the Cartesian events product of the range of covariates 
(or ranges defined by the predicted partial likelihood 
estimates of the model) and the time axis, (with expected 
numbers of events predicted by the model) in the cells 
are computed, and a chi-squared statistic for the fit is 
obtained. The number of partitions of the time-axis is 
arbitrary but the defined portions (time intervals) should 
be non-overlapping. 
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A variety of residuals have been developed for a fitted PH 
model such as Cox-Snell residuals4, Schoenfeld residuals5 
etc. Plots of these residuals are useful in detecting non-
proportionality of predicted hazards of the fitted model 
over the covariate space for each covariate. 

	 The objective in the present paper is to illustrate the 
usefulness of the global goodness-of-fit test proposed by 
Schoenfeld2 and to discuss other classical methods of 
testing validity of Cox PH models. This is achieved by 
examining each method and applying all the mentioned 
model validation techniques including the new global 
goodness-of-fit test proposed by Schoenfeld2 to a large, 
real life data set that includes several covariates. The 
data is about the times that heroin addicts remain in a 
clinic for methadone maintenance treatment6. Several 
possible explanatory variables are recorded along with 
the termination times for 238 individuals. Simply, 
the approach discussed in this paper extends the ideas 
developed for goodness-of-fit testing and residual 
analysis for a censored set of real data. 

METHODS AND MATERIALS

Assumption of proportional hazards: Suppose two 
groups, namely group 1 and 2 (for example say, group 1 
is receiving the new treatment and group 2 is receiving 
the standard treatment), are compared with respect 
to the hazard of each group. Let λ1 (t | group 1) and 
λ2 (t | group 2) be the hazard functions of group 1 and 
group 2 respectively, where t > 0. Then the two groups 
are said to have proportional hazard, when the hazard 
ratio Ψ  is constant over time. That is,
	
	 1

2
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,   for all .

|  2
t group

t
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Kaplan-Meier curves: The Kaplan-Meier method7 
estimates the survival function that summarizes the 
survival data. The curves of Kaplan-Meier survival 
functions work best for time fixed covariates with 
few levels. If the predictor satisfies the proportional hazard 
assumption then the graph of the log [-log(survival)] 
versus log of survival time should result in parallel lines. 

The Cox regression model1: Let Ti be the failure time for 
subject i, i =1,...,n. If Ti follows the Cox proportional 
hazards regression model, then the hazard function 
for Ti at time t > 0, conditional on the p x 1 covariate 
vector Zi , is 

λ (t | Zi ) = λ0 (t) exp (β'Zi )	                                     ...(1)

where λ0 (t) is the baseline hazard function (i.e. the hazard 
function when all covariates take value zero) and β is a   

p × 1 vector of regression coefficients. Statistics are 
designed to check whether interaction terms between 
elements of Zi or higher order terms in the elements of Zi 
need to be added to β' Zi .

Using counting process notation, the information in the 
data can be represented by

	 {Ni (t),Yi (t), Zi : 0 < t < ∞}

where Ni (t) takes value one if subject i has been observed 
to fail prior to time t and takes value zero otherwise 
and Yi (t) takes value one if subject i is at risk at time 
t and takes value zero otherwise. Then the Cox partial 
likelihood score vector equals
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 is a weighted average of the 

Zi 's and i i idN s N s N s   is a binary random 
variable that equals one if subject i fails at time s and 
equals zero otherwise. The maximum partial likelihood 
estimate ˆ   is the solution to ˆ( ) 0u   .

Model validation for Cox PH model:

Cox-Snell residuals4 and the log-cumulative hazard plot 
of the Cox-Snell residuals: The Cox-Snell residuals for 
the Cox PH model are given by

		                    	                                   …(2)
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cumulative baseline hazard function at time t.

	 When the fitted model is correct, the Cox-Snell 
residuals (rcox–snell )i  , are a plausible sample of observations 
from a unit exponential distribution. Thus, a plot of Cox-
Snell residuals versus observations (or time) will not lead 
to a symmetric display.

	 The log-cumulative hazard plot of residuals is given 
by plotting ˆlog log cox snell i

S r  values against log 

(rcox-snell )i. A straight line plot with unit slope and zero 
intercept will then indicate that the fitted survival model 
is adequate in satisfying the proportional hazard 
assumption.

Schoenfeld residuals5: The Schoenfeld residual vector is 
calculated on a per event time basis as

( )i iU t Z t Z t  	                                    …(3)

0
ˆ ˆexp( )cox snell ii

r Z t  
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where Z t   is a weighted average of the covariates over 
the risk set at time t and is 

given by, 1

1

ˆexp( )
ˆexp( )

n
j j jj

n
j jj

Z t Y t Z t
Z t

Y t Z t
  

Under the proportional hazards assumption, the 
Schoenfeld residuals have the sample path of a random 
walk; therefore, they are useful in assessing time trend or 
lack of proportionality. Due to time dependent covariates 
the generalized linear regression of the Schoenfeld 
residuals on functions of time gives a non-zero slope. 
Thus, a non-zero slope is an indication of a violation 
of the proportional hazard assumption. As with any 
regression it is recommended to look at the graph of the 
regression in addition to performing the tests of non-zero 
slopes.   There are certain types of non-proportionality 
that will not be detected by the tests of non-zero slopes 
alone but that might become obvious when looking at 
the graphs of the residuals such as nonlinear relationship 
(i.e., a quadratic fit) between the residuals. 

Goodness-of-fit statistics 8 : In the Cox regression model, 
the hazard ratio for subject i versus subject j at time t is
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When comparing two individuals, the individual with 
the larger value of exp(β'Zi ) has greater risk of death at 
time t. To form the proposed goodness-of-fit statistics, the 
partial likelihood estimate of φi=exp(β'Zi) is obtained, first, 
which is ˆˆ exp( )i iZ  . Then the subjects are grouped or 
partitioned into regions based on the percentiles of ˆi  , 
which we call percentiles of risk. Following Hosmer and 
Lemeshow’s9 approach with binary data, it is suggested 
to form G regions of approximately equal size so that the 
first group contains the n/G subjects with the smallest    
ˆi  ’s, and the last group contains the n/G subjects with 

the largest ˆi  ’s. In general, this classification leads to 
grouping subjects that are considered similar in that they 
have similar risks of death at any given time i.

Given the partition of the data, the goodness-of-fit statistic 
is formulated by defining the (G –1)group indicators
	

ˆ1   if  is in region 
0   if otherwise,         
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g = 1,...., G – 1. Then, in order to assess the goodness-
of-fit of the model (1), we consider the alternative Cox 
model,

1
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If model (1) is correctly specified, then 
γ1= γ2=.....= γG-1 = 0  in (4). Although Iig is based on the 

random quantities ˆi  ’s, Moore and Spruill10 showed that, 
asymptotically, one can treat the partition as if it was based 
on the true φi ’s (and thus, regard I ig as a fixed covariate). 
To test the goodness-of-fit of model (1) versus alternative 
(4), the likelihood ratio, Wald, or score statistic can be 
used to test H0 : γ1 = γ2 =....... = γ G-1= 0. If model (1) has 
been correctly specified, each of these statistics has an 
approximate chi-squared distribution with (G–1) degrees 
of freedom (d.f.) when the sample size is large. 

	 Although the score, Wald, and likelihood ratio 
statistics are asymptotically equivalent, the score statistic 
for H0 : γ1 = γ2 =....... = γ G-1= 0 in (4), is proposed over 
others since it has a nice intuitive interpretation. For 
model (4), the score vector is

	

where γ = [ γ1,......,γ G–1 ]' and Ii = [ Ii1,......, I i,G–1]' .

Let ˆ  
0 be the estimate β under the null hypothesis γ = 0. 

The score test statistic for testing this null is,

0
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0 , γ = 0) . 

Since  1 0
ˆ( ,0) 0u    ( ˆ  0  is the  solution to  1 0

ˆ( ,0) 0u   ), 
the score statistic is actually based on the large sample 
distribution of 2 0

ˆ( ,0)u  . Using an algebraic identity,  
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being the Breslow11 estimate of the baseline hazard. 
Substituting (6) and (7) in (5), one can show that
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and thus that the gth element of  2 0
ˆ( ,0)u   equals,
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where Og  is the observed number of failures in region 
(group) g and Eg is the estimated expected number of 
failures [under model (1)] in region g. Alternatively, (8) 
can be expressed as 

1
ˆn

ig ii
I M   ,

where

0
ˆ ˆ , , , ,i i i i i i iM dN s E dN s N u Y u Z I u s  

is the martingale residual given by model (1). Thus, 
our goodness-of-fit statistic is actually a function of the 
observed minus the estimated expected number of failures 
in each region or, equivalently, the martingale residuals 
in each region. Because of this fact, it can describe 
what is meant by large samples, i. e., the statistics have 
approximate chi-squared distribution with (G–1) d.f. 
when the sample size is large.

	 Using the partition based on the percentiles of risk 
(percentiles of ˆi  ’s), the above statistic has little power to 
test whether the proportional hazard assumption is valid. 
However, this statistic can easily be extended to have 
power to detect non proportional hazards by using the 
approach of Schoenfeld2.

	 There, in addition to partitioning the subject based 
on the percentiles of risk as explained above, the time 
axis should also be partitioned into say, τ intervals, 
which are consecutive and non-overlapping, containing 
approximately an equal number of subjects in each 
interval. 

Accordingly,  (τ – 1) indicators are defined,

* 1   if  is in region 
0   if otherwise,         

i
ik

t k
I  

k = 1,....., τ – 1. Then, in order to assess the goodness-
of-fit along with testing PH assumption of model (1), 
we define the alternative Cox model including the (τ–1) 
(G – 1) interaction terms as follows
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Then, as explained previously, the score test statistic can 
be used to compare model (1) and model (9). If model (1) 
is found as not significantly deviated from model (9) (i.e. 
the hazard is the same over covariate space as well as 
over time), then it can be decided that the goodness-of-fit 
and PH assumption hold for model (1).

	 A rough sample size criterion for the resulting 
goodness of fit statistic to be approximately chi-square, 
can be used in deciding the numbers  G and τ. In particular, 
the τ × G  regions formed by the cross classification of the 
covariate and time partitions should be chosen in such a 
way that 6 ≤ τG ≤  D/5, where  D is the total number of 
failures in the data set.
 
	 Since the score statistic is similar to Pearson’s 
chi-square for contingency tables (a function of observed 
and expected frequencies), it is suggested that all 
estimated expected counts Egk in each cell representing 
τ × G regions be greater than 1 and at least 80% should 
be greater than or equal to 5. For situations when this 
does not hold, the chi-square approximation for the score 
test may be poor. One possible solution to this is to use a 
smaller number of τ – G  regions in the interval [6, D/5], 
for which 80% of the Egk’s are greater than or equal to 5.

Example

The data set used in this study is from a clinical trial on 
238 heroin addicts following methadone maintenance 
treatment6, in which the outcome is the time until the 
addict terminates the treatment procedure. Thus, the 
endpoint of interest is not death, but termination of 
treatment. Some subjects were still in the clinic at the 
time these data were recorded and this is indicated by 
the variable “status”, which is equal to 1 if the person 
had departed the clinic on completion of treatment 
(uncensored) and 0 otherwise (right censored). The 
measured possible explanatory variables for time to 
complete treatment are namely, maximum methadone 
dose (“dose”, a continuous variable in units-milligrams), 
whether the addict had a criminal record (“prison”, a 
categorical variable with two levels, 1 – have criminal 
records, 0 – no records) and the clinic in which the addict 
was being treated (“clinic”, a categorical variable with 
two levels, 1 – clinic 1, 0 – clinic 2)- are recorded along 
with the termination times for all 238 individuals. The 
overall event rate for this data set is 0.63 (=number 
terminating treatment/238=150/238).

	 According to the main aim of this study, a PH model 
was fitted in order to determine the goodness-of fit of 
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the model by applying the techniques described in the 
previous section.
  
	 As a preliminary identification of proportionality of 
hazards or departure from it, log cumulative hazard plots 
based on Kaplan-Meier estimates are drawn for the three 
explanatory variables where the continuous variable 
“dose” is categorized into 3 levels <60, 60-79 and 80. 
Figures 1 is the log cumulative hazard plots for levels of 
variables “dose” “prison” and “clinic” respectively. 

	 In Figure 1, the log cumulative hazard function 
(estimated by the Kaplan-Meier method) for the three 
levels of “dose” are approximately parallel. The log 
cumulative hazard function for the two levels of “prison” 
does not seem parallel and as it is depicted in the third 
graph of Figure 1, the distance between the log cumulative 
hazard function for the two levels of “clinic” increases 
over the log of survival time indicating non parallelism 
and the curves for the two levels are also seen to cross. 
However, a particular conclusion cannot be made from 
these results since a Kaplan-Meier survival curve is a 
univariate method of estimating survival for the levels of 
a factor which is unadjusted for other existing factors.

	 The next step is to fit the Cox PH model for the 
survival experience regressed on the explanatory 
variables. The explanatory variable – Methadone dose 
(“dose”) is the standardized methadone dose since it is 
observed that the dose varies by 10 to 15 units in the 
recorded data. Then, to fit the model, the PROC PHREG 
procedure of the SAS package was used and the following 
Cox PH model (parameter estimates are given in Table 1) 
is fitted using the forward selection criteria12. 

0 1 2 3
ˆ ˆ ˆexp( )prison clinic

i it t dose              ...(10)

where i, i = 1,....,238.

The fitted model (10) includes the categorical covariate 
“clinic” which showed non-proportional hazard when 
considered individually. Thus it is expected that the model 
will fail to hold valid the PH assumption unless the non-
proportionality of hazards for “clinic” is cancelled out 
due to the adjustments of the other explanatory variables. 
However, without an appropriate residual analysis and 
goodness-of-fit tests, it is not appropriate to state anything 
about the validity of the fitted model.

Testing Validity of the Fitted Model:

The Cox-Snell residuals for model (10) are computed 
according to equation (2). The log-cumulative hazard 
plot of the Cox-Snell residuals depicted in Figure 2 is 

used to identify any departure from a well fitted model 
that satisfies the proportional hazard assumption.

	 It is explained under a previous section that a 
straight line log cumulative hazard plot with unit slope 
and zero intercept will indicate that the PH assumption in 
the model holds. Figure 2 illustrates that there is a slight 
deviation of points from a straight line indicating that 
this is a boarderline case. Thus, based on this plot it is 
difficult to come to a firm conclusion regarding departure 
from PHs.

	 The Schoenfeld residuals for each covariate 
“dose”, “prison” and “clinic” computed as given in 
equation (3) are observed and are plotted against time 
(time of termination from treatments). These plots are 

Figure 1:	Log cumulative hazard plots for levels of the three variables

 
 Log cumulative hazard plot for the levels of variable “dose” 

 
 

Log cumulative hazard plot for the levels of variable “prison” 

 
 

Log cumulative hazard plot for the levels of variable “clinic” 

 



46 			                       	 W. W. M. Abeysekera & M.R. Sooriyarachchi

March 2009	    					         Journal of the National Science Foundation of Sri Lanka 37 (1)

depicted in Figure 3 where fitted linear and quadratic 
regression lines for the Schoenfeld residuals are visible 
on the same plot. 

	 According to Figure 3, the best fitted line for the 
Schoenfeld residuals for “dose” has a slope which is 
not significantly different from zero (since p-value for 
slope is 0.5454>>0.05), and the fitted quadratic line is 
balanced around the zero horizontal axis. The illustration 
in the plot of Schoenfeld residuals for “prison” leads to 
the same interpretation, where the fitted linear regression 
line has non-significant slope (since p-value for slope is 
0.3653>>0.05), and the fitted quadratic line is balanced 
around the zero horizontal axis. Thus, it can be concluded 
that the covariates “dose” and “prison” do not violate the 
PH assumption of the fitted model (10) and are also not 
time dependent. However, the fitted linear regression line 
for the plot of Schoenfeld residuals for “clinic” (Third 
graph of Figure 3) has a slope which is significantly 
different from zero (p-value for slope is 0.0007<<0.05) 
and the fitted quadratic curve also highly deviates from 
the zero horizontal axis. This result indicates that the 
covariate “clinic” violates the PH assumption of the 
model (10) and hence leads to the conclusion that “clinic” 
is probably a time dependent covariate.

	 To justify the findings expressed in this section, the 
variable “clinic” can be tested for it’s time dependency. 
For that, it is tested whether there is a significant 

difference between the current model (10) and the model 
regressed on all the covariates in (10) plus the interaction 
term “time*clinic” [model (11)].

0 1 2 3 4
ˆ ˆ ˆ ˆexp( * )prison clinic clinic

i it t dose t  
      

…(11)

Under the null hypothesis that model (10) fits the data 
well, the deviance difference between model (10) and 
model (11) follows a Chi-square distribution with 1 d.f. 
The calculated difference in deviance between model 
(10) and (11) is 11.509 (p-value = 0.000693 <<0.05). 
This indicates that the interaction term “time*clinic” 
is highly significant and hence it is confirmed that the 
variable “clinic” is a time dependent covariate and thus 
violates the PH assumption.

Testing the goodness-of-fit: To determine the goodness-
of-fit of model (10), the 238 subjects are grouped 
into G=5 groups (approximately 48 individuals in 
each group), based on the percentiles of the partial 
likelihood estimates ( ˆi  ) predicted by model (10). 
Simultaneously, the time axis is partitioned into τ =2 
intervals, t ≤ 367 (days) and t > 367 (days), such that the 
238 individuals are divided equally among each interval. 
Determining  G and  τ  are done under restriction 6 ≤ (τ = 2) 
(G = 5 ) ≤ (D =150)/5, where  D = 150 is the total number 
of failures in the data set, and all estimated expected 

Table 1:	 Parameter estimates of model (10)

		 Variable	 DF	 Parameter	 Standard	 Chi-square	 Pr>ChiSq	 Hazard ratio	 95% Hazard 	 ratio		
			   estimate	 error 	 confidence 			   confidence	 limits

		 prison (1)	 1	 0.32647	 0.16722	   3.8115	  0.0509	 1.386	 0.999	 1.924
		 dose	 1	 -0.5114	 0.09218	 30.7783	 <.0001	 0.6	 0.501	 0.718
		 clinic (1)	 1	  1.00875	 0.21487	 22.0411	 <.0001	 2.742	 1.8	 4.17

32 
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Figure 2:	 Log cumulative hazard plot of Cox-Snell residuals for 		
	 model (10)

		 Table 2: 	 Observed and expected number of addicts terminated 	
		  from treatment, predicted by model (10)

		 Region	 Grouping by	 Time	 Observed	 Expected 
		  	 percentiles of	 interval
			  ˆi  					   
		
		 1	 1	 1	 5	 13.64
		 2	 2	 1	 13	 20.81
		 3	 3	 1	 18	 30.06
		 4	 4	 1	 14	 23.96
		 5	 5	 1	 11	 27.37
		 6	 1	 2	 9	      1.27 *
		 7	 2	 2	 16	      3.19 *
		 8	 3	 2	 17	   5.29
		 9	 4	 2	 20	   9.59
		 10	 5	 2	 27	 14.83					  
					    150	   150		
		 * Expected count less than 5
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counts in each cell representing  (τ = 2) × (G = 5) = 10 
regions, are greater than 1 and at least 80% are greater 
than or equal to 5. The expected counts for the 10 regions, 
estimated by model (10) are illustrated in Table 2.

	 It can be seen from Table 2, that all expected counts 
are greater than 1 and 8 out of the 10 regions have 
expected counts greater than 5 (80%). Thus, this grouping 
is appropriate when using the Chi-square approximation 
for the goodness-of-fit test discussed in the following.  	

According to the grouping defined above, the indicator 
variables I ig [indicating that the i th individual belongs 
to g th region partitioned based on the percentiles of the 
partial likelihood estimates ( ˆi  )] where g = 1 ,....,4 and 
I*

ik (indicating that the i th individual belongs to k th time 
interval) where k = 1, are defined.

Then, the alternative Cox model given below is fitted,

2

4 1
* * *

0 1 3
1 1

*ˆ ˆ ˆ| exp   *prison clinic
i i gk ig ik

g k
t Z t dose I I  …(12)

Figure 3:	 Schoenfeld residuals for each explanatory variable versus survival time



48 			                       	 W. W. M. Abeysekera & M.R. Sooriyarachchi

March 2009	    					         Journal of the National Science Foundation of Sri Lanka 37 (1)*Corresponding author

The score test statistic for model (10) is 56.27 associated 
with 3 d.f. and that of the alternative model (12) is 159.19 
with 7 d.f. Thus the score goodness-of-fit statistic for the 
fitted model (10) is x2 =102.93 (=159.19–56.27) with 4 
(=7–3) d.f. (p-value <0.001) indicating that the alternative 
model (12) is significantly different from model (10) and 
hence the goodness-of-fit fails for model (10). Since this 
test is powerful in testing the PH assumption too, it can 
be concluded that the PH assumption in the fitted model 
(10) is violated.

DISCUSSION

The Cox PH model is the most popular method of 
examining the effect of explanatory variables on survival. 
However, it requires the assumption of proportional 
hazards between strata formed by the combinations of 
levels of the different explanatory variables. Thus, when 
fitting a PH model it is vital to assess the assumption of 
proportionality. There are numerous methodologies in 
the literature2-5, 8-10  for checking the assumption of PHs. 

	 Kaplan-Meier survival estimates in graphical 
format are useful in preliminary identification of 
proportional hazards for levels of categorical variables 
taken individually. However, this method is cumbersome 
when there are several explanatory variables. Also 
it is a univariate method and does not adjust for other 
covariates. In this case, more advanced techniques are 
required. One may fit proportional hazards regressed 
on several explanatory variables (PH models) in order 
to identify combined effects of several covariates on 
the relative risk. However, in the fitted PH model, the 
explanatory variables included in the model should 
satisfy the restriction that the relative risk is proportional 
over the time for different levels of covariates (i.e. PH 
assumption). If this requirement is present in the fitted 
PH model then the assumption of PH is not violated. 

	 This paper was basically written with the objective of 
illustrating the usefulness of a new global goodness-of-fit 
test and discussing a number of established approaches in 
determining the validity of a fitted Cox PH model. In this 
paper this new test and a number of established methods 
for testing the PH assumption are examined by way 
of an example. Simultaneously developing a software 
programme in SAS to use in applying these techniques 
was a secondary objective of this paper. The methods are 
applied to a data set taken from a clinical trial on heroin 
addicts following methadone maintenance treatment6, in 
which the time until the addict terminates the treatment 
procedure is measured. Three possible covariates namely 
maximum methadone dose (“dose”), whether the addict 
had a criminal record (“prison”) and the clinic in which 

the addict was been treated (“clinic”)- that were suspected 
to influence the termination time were recorded for 238 
heroin addicts.

	 Prior to model fitting, the conventional descriptive 
method, in identifying proportional hazards on each 
categorical covariate taken individually, namely Kaplan-
Meier survival curves, are used on data. This identified 
that the two levels of “clinic” and also the two levels 
of “prison” do not have proportional hazards, hinting 
that these variables may violate the PH assumption 
when it is included in the model. The variables “dose” 
showed approximate proportional hazards. However, 
a firm conclusion was not made about this result since 
a univariate method is not reliable when dealing with 
several explanatory variables.

	 A Cox PH model was then fitted to the data, using 
forward selection procedure that ended up including all 3 
explanatory variables into the model. 

	 The Log cumulative hazard plot of Cox-Snell 
residuals suggested that the goodness-of-fit of the 
model is boarderline, as the points deviate slightly from 
a straight line. Then, the Schoenfeld residuals for each 
covariate were studied. This indicated that the variable 
“clinic” violates the PH assumption of the fitted model 
while the other two covariates “prison” and “dose” do 
not. According to Schoenfeld5, one of the reasons that 
a covariate violates PH assumption is when it is time 
dependent. 

	 The Cox PH model for the hazard of death at time 
t for the ith of n individuals in a study can be expressed 
as equation (1) where 

1

n

i i ji
j

Z x  . This model can be 

generalized to the situation when one or more explanatory 
variables are time dependent by writing x ji (t) in place 
of x ji in equation (1). There are several simple ways 
to extend the Cox model to include a time dependent 
covariate13.  More complicated forms of relationships 
between the outcome and explanatory variable over 
time are discussed by Fisher and Lin14. These authors 
explain the way in choosing the functional form of the 
time dependence of the covariate which they mention is 
usually not self evident but may be suggested by biological 
understanding. Some popular functional forms are time 
lagged covariates, moving weighted average of value 
over a lag time period, linear form, Splines, Piecewise 
constant functions with the covariate etc., to name a few. 
In our study the simple linear form was selected as the 
choice of a complex functional form raises the possibility 
of too much modeling and great over-fitting of the data 
set. Also it is known that when the PH assumption does 
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not hold this is a good choice, though it is somewhat 
restricted. Thus, using this approach it is found that the 
variable “clinic” is time dependent. 

	 As the final approach, the global goodness-of-
fit test for Cox PH models, proposed by Schoenfeld 2, 
that has power to detect the insufficiency of covariates 
in describing the relative risks and the assumption of 
PH, was applied to the fitted model. Here an alternative 
model which contains variables that indicate partitions of 
relative risk (hazard ratios) over covariate space and the 
time space, where if these indicator variable are found 
significant in the model, implies that the covariates are 
not sufficient or the PH assumption does not hold. In 
other words, to perform this, an alternative model that 
contains all the covariates in our fitted model plus the 
indicator variables that indicate the partitioned regions 
had to be compared with the fitted model using the score 
test statistic which has chi-squared distribution when our 
model has been correctly specified. Accordingly, the 238 
subjects are grouped into 5 groups based on the percentiles 
of the partial likelihood estimates predicted by the fitted 
model and the time axis is partitioned into 2 intervals 
(t ≤ 367 days and t > 367 days). Thus, altogether there 
were 5×2 =10 regions and this partitioning did not violate 
the requirement for a Chi-square distribution of the score 
statistic since all estimated expected counts (expected 
number of addicts that terminate treatments) in the 10 
regions are greater than 1 and 80% are greater than or 
equal to 5. Then, the alternative model [model (12)] is 
fitted as described previously and it was found that there 
is a highly significant difference between that [model 
(12)] and our fitted model [model (10)]. Thus, with this 
result, it is determined that the goodness-of-fit along 
with the PH assumption is not satisfied for the fitted PH 
model. Finally, it is concluded that the PH assumption 
does not hold for the fitted model due to the inclusion of 
time varying covariate – “clinic” – and hence does not 
satisfy the global goodness-of-fit. 

	 Another important finding of this analysis is that 
most of the other techniques were subjective and were 
unable in boarderline cases to confirm the lack-of-fit 
or violation of PH assumption due to time dependent 

covariates. The only objective method of all methods 
examined in this paper is the global goodness-of-fit test 
proposed by Schoenfeld 2. Therefore, it is recommended 
as the most reliable method in validating the PH model. 
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Annex 

SAS  CODES:

/*importing the data set*/
PROC IMPORT OUT= WORK.heroindata 
	         DATAFILE= “C:\survival\heroin.csv” 
	         DBMS=CSV REPLACE;
    	 GETNAMES=YES;
    	 DATAROW=2; 
RUN;

data heroin;
	 set heroindata;
	 if clinic=1 then clin=1;  if (clinic ne 1) then clin=0;

	 /*categorizing dose” to use only in Kaplan-Meier 	
	 plots*/
	 if dose<60 then dose_cat=1; else if dose>59 & dose 	
	 <80 then dose_cat=2; else dose_cat=3;
run;

/*Drawing Kaplan-Meier curves for the three 
variables*/
proc lifetest data=heroin plots=(s,lls);
time time*status(0);
strata dose_cat;
run;

proc lifetest data=heroin plots=(s,lls);
time time*status(0);
strata clin;
run;

proc lifetest data=heroin plots=(s,lls);
time time*status(0);
strata prison;
run;

/*standardizing the variable “dose”*/
proc stdize data=heroin out=heroin2;
	 var dose;
run;
/*Fitting the best model selected using the Forward 
selection procedure (model (10))*/
proc phreg data=heroin2;
	 model time*status(0)=prison dose clin;
	 output out=diagout survival=srv resmart=mr;
run; 
/*srv=estimated survival function, mr=martingale 
residual*/

data diagno;
	 set diagout;
	 csr=-1*log(srv);/*computing Cox-Snell residual*/
run;
/*plotting Cox-Snell residuals versus survival time*/

proc gplot data=diagno;
plot csr*time;
symbol1 v=dot i=disjoin;
run;

/*plotting the log cumulative hazard plot of Cox-Snell 
residual with it’s best fitted straight line*/ 
proc lifetest outsurv=resid;
	 time csr*status(0);
run;

data csres;
	 set resid;
	 llp=log(-log(survival));
	 lcsr=log(csr);
run;
	 proc reg data=csres;
		  model llp=lcsr;
	 run;
	 data csres2;
		  set csres;
		  yhat= -0.01089+ 0.99254*lcsr;
	 run;
	 proc gplot data=csres2;
		  plot llp*lcsr yhat*lcsr/overlay;
	 run;

/*Observing Schoenfeld residuals for dose*/
proc phreg data=heroin2;
	 model time*status(0)=dose clin prison/ rl;
	 output out=sres RESSCH=sconr;
run;

data sconan;
set heroin2; set sres;
/*fitting straight line for the Schoenfeld residuals for 
dose*/

	 proc reg data=sconan;
	 model sconr=time;
	 run;

	 data plotres3;
	 set sconan;
	 psconr=  -0.06045 + (0.0001749*time);
/*Drawing the fitted straight line and the plots in the 
same graph*/

	 proc gplot data=plotres;
	 plot sconr*time psconr*time/overlay;
	 run;

/* Observing Schoenfeld residuals for prison*/
proc phreg data=heroin2;
	 model time*status(0)=prison clin dose/ rl;
	 output out=sres RESSCH=scon;
run;
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data sconan;
set heroin2; set sres;
/*fitting straight line for the Schoenfeld residuals for 
prison*/	
	 proc reg data=sconan;
	 model sconr=time;
	 run;

	 data plotres2;
	 set sconan;
	 psconr= 0.05227 + (-0.00015132*time);
	 run;
/*Drawing the fitted straight line and the plots in the 
same graph*/
	 proc gplot data=plotres;
	 plot sconr*time psconr*time/overlay;
	 run;

/* Observing Schoenfeld residuals for clinic*/
proc phreg data=heroin2;
	 model time*status(0)=clin prison dose/ rl;
	 output out=sres RESSCH=sconr;
run;

data sconan;
set heroin2; set sres;
/*fitting straight line for the Schoenfeld residuals for 
clinic*/
	 proc reg data=sconan;
	 model sconr=time;
	 run;

	 data plotres;
	 set sconan;
	 psconr= -0.15762 + (0.00045630*time);
/*Drawing the fitted straight line and the plots in the 
same graph*/
	 proc gplot data=plotres;
	 plot sconr*time psconr*time/overlay;
	 run;

/*to check whether “clinic” is time dependent*/
proc phreg data=heroin2;
	 /*model with the interaction “time*clinic”*  	
	 (model (11))/
	 model time*status(0)=prison dose clin cl_t/ rl;
	 cl_t=clin*time;
run;

/****GOODNESS-OF-FIT TEST PROCEDURE***/ 
proc sort data=heroin;
by time;
run;

proc stdize data=heroin out=heroin2;
	 var dose;
	 run;

proc phreg data=heroin2;
	 model time*status(0)=prison dose clin;
	 OUTPUT out=resout xbeta=xb resmart=rm;
run; /*xb=linear predictor, rm=martingale residual*/

data test1;

set heroin2;
	 set resout;
	 phi=exp(xb); /*computing the partial likelihood 	
	 estimate*/
	 proc sort data=test1;
	 by phi;
	 run;

data test2;
set test1;
c=_n_;
/*partitioning the data into 5 groups according to the 
percentiles of partial likelihood estimate*/
if c<239 then I1=1; else I1=0;
if c<191 then I2=1; else I2=0;
if c<144 then I3=1; else I3=0;
if c<96 then I4=1; else I4=0;
if c<49 then I5=1; else I5=0;
run;

data test3;
set test2;
	 proc sort data=test3;
	 by time;
	 run;
data test4;
set test3;
c2=_n_;
/*partitioning the time space in to 2 groups*/
if c2<120 then T1=1; else T1=0;
/*defining interaction terms that indicate the 10 
regions*/ 
int1=I1*T1; int2=I2*T1; int3=I3*T1; int4=I4*T1; 
run;

/*TO COMPARE THE CURRENT MODEL (model 
(10)) WITH THE FITTED ALTERNATIVE MODEL 
(model (12))*/
/*current model*/
proc phreg data=heroin2;
	 model time*status(0)=prison dose clin;
	 run;
/*alternative model*/
proc phreg data=test4;
	 model time*status(0)=prison dose clin int1-int4;
	 run;


