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ABSTRACT 
 

An innovative technique is utilized for rainfall forecasting using Artificial Neural Networks based on 
feed-forward back-propagation architecture. Focus is set upon making successful predictions from 
the available data, not on incorporating the physical aspects of the atmosphere or the actual 
process of rainfall occurrence. Both short term and long term forecasting was attempted for ground 
level data collected by the meteorological station in Colombo, Sri Lanka (Lat: 79.87 E, Long: 6.90 
N, Altitude: 7.3 m).  
 
Three Neural Network models were developed; a one-day-ahead model for predicting the rainfall 
occurrence of the next day, which was able to make predictions with a 74.25% accuracy, and two 
long term forecasting models for monthly and yearly rainfall depth predictions with 58.33% and 
76.67% accuracies within a 5% uncertainty level. Each of these models was extended to make 
predictions several time steps into the future, where accuracies were found to be decreasing with 
the number of time steps. The success rates and rainfall trends within the monsoon seasons were 
also studied and presented. 
 
 
1. INTRODUCTION 
 
Over the last few decades, several models have been developed, attempting the successful 
forecasting of rainfall in Sri Lanka. Though some of these models show notable accuracies 
in short term rainfall occurrence prediction [1, 2], long term prediction and rainfall depth 
prediction has proven to be somewhat difficult using traditional statistical methods. The 
reason being that the rainfall dynamics are dependant upon highly unpredictable physical 
parameters such as humidity, wind speed, wind direction, pressure, temperature and cloud 
amount. 
 
Considering each of these physical parameters generate increasing degrees of sophistication 
in the statistical models. Importance of each parameter has to be taken into account, thus, 
making initial assumptions about the parameters on hand may become necessary. 
Fortunately, recent developments in artificial intelligence and pattern recognition provide 
an answer for this dilemma.  
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Using Artificial Neural Networks (ANNs) which are based upon the neural structure of the 
human brain, complex pattern recognition can be attempted without making any initial 
assumptions where the data set used is allowed to govern the process by itself. An ANN 
provides the user a model free tool, which can generate input-output mapping for any set of 
data, however complex. Training the network with the relevant data enables the network 
the ability of making predictions based on any input it encounters [3, 4]. 
 
1.1 Artificial Neural Networks 
 

Recognition of the fact that the functioning of the human brain is completely different from 
a Von Neumann based traditional digital computer has inspired the development of 
Artificial Neural Networks which are capable of performing complex computations such as 
complex pattern recognizance that traditional computers lack the capacity to handle.  
 
The fundamental processing element of an ANN is an artificial neuron. Just like the natural 
neuron in human brain, it can receive inputs, process them and produce the relevant output. 
A simple mathematical model can be used in explaining a neuron quantitatively. 
 
 

 
Figure 1: Modeling a Simple Neuron 

 

The net input at the summing junction can be written as: ∑
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Linking a neuron with others via synapses result in a network of neurons which can be 
single layered or multi layered. A multi layer ANN contains an input layer of neurons, an 
output layer of neurons, and may also contain one or more hidden layers of neurons, so 
called because they are not directly visible to the outside. 
 
According to the neuron positioning and connection types, various types of ANNs have 
been developed. The type utilized in this paper is feed-forward back-propagation Networks. 
 
1.2 Feed-Forward Back-Propagation Architecture 
 
The feed-forward, back-propagation architecture, developed in the early 1970s, is still the 
most popular and most effective model for complex, multi layered networks. The model is 
extensively used in weather and financial forecasting networks.  
 
The term feed-forward refers to the inputs being swept forward through the network, 
getting multiplied by each synaptic weight and being summed at each node until the output 
node is met. Then, back-propagation occurs where the desired output is compared with the 
produced output and errors are backwardly propagated through the network where synaptic 
weights for each layer are adjusted in proportion to this error, limited by a factor defined by 
the user so that large adjustments may cease to occur for stray values in the data set. 
 
The same cycle continues for multiple times, for the same input and output vectors as the 
weights are fine tuned to produce the best possible output; in this case, the closest value to 
the desired output. Global accuracy of the network is increased in each cycle as the error 
becomes smaller with the number of cycles.  
 
The priority is given to determining the weights which makes the maximum contribution 
towards the error, and making adjustments before moving on to less significant nodes. 
Changing the weight of an inactive node may not improve the network performance at all.  
 
The typical back-propagation network contains an input layer, an output layer, and at least 
one hidden layer. The number of neurons at each layer and the number of hidden layers 
determine the network’s ability on producing accurate outputs for a particular data set. 
Unfortunately, there are no well defined methods for determining these characteristics. 
There is no quantifiable best answer to the layout of a network for any particular 
application. It is solely based on trial and error methods and the network designer’s own 
experience, where finding the most effective network for a particular data set can be 
considered as an art.  
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1.3 Training and Testing Methods  
 
Once a network had been structured for a particular application, inputs and the 
corresponding targets are used to train a network until it learns to associate a particular 
input with a reasonable output. A network is ideally trained until the change in weights in a 
training cycle approaches a minimum, improving its performance through the learning 
process.  
 
After the network is sufficiently trained, it has to be tested for its ability to produce accurate 
outputs. Large multilayered networks with multiple nodes in each layer are capable of 
memorizing data due to the vast number of synaptic weights available on such a network. 
Thus, generating correct outputs for input vectors encountered within the training process 
does not justify the ability of a network to generate accurate outputs. 
 

 
2. SHORT TERM FORCASTING 
 
In developing a model for short term forecasting, an attempt is made at forecasting the 
rainfall occurrence of the next day, i.e. whether tomorrow would be a dry day or a wet day. 
 

2.1 The One-Day-Ahead Model 
 

A wet day was defined as a day in which the total rainfall depth of 24 hours from 12 AM 
exceeds or is equal to 0.1 mm, a value based upon the minimum measurement made by the 
meteorological department where depths under 0.1mm are not numerically recorded. Any 
day which had a rainfall depth under 0.1mm was considered a dry day. The basic 
parameters considered here upon which rainfall occurrence depends are: humidity (due to 
high variability, four values measured at 0600, 1200, 1800 and 2400 hours), Pressure 
(measured at 0900 hours), wind run (distance the wind had traveled within 24 hours), 
temperature (average for the last 24 hours) and cloud amount (cloud cover index). 
 

When all other parameters were considered, temperature did not improve the results of the 
network, thus was omitted from the final design for the sake of improving the network 
efficiency. Including the past 3 days rainfall occurrence data in the input vector immensely 
improved its accuracy of the prediction. 
Input value to the network for rainfall occurrence was defined as, 
 

Xt = 0, if Rt < 0.1 mm  Xt = 1, if Rt > 0.1 mm 
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Where Rt is the rainfall depth of the tth day and Xt is the corresponding input value to the 
network. Each of the parameters, except rainfall occurrences was normalized to limit the 
inputs between [-1,1] to improve the training efficiency. The 10-6-1 network architecture 
showed best potential within a short training and testing period, and was considered as the 
final network.  
 
Figure 2 represents the logical interpretation of the network.  
 

     Input Layer      Hidden Layer          Output Layer 

 
   Figure 2: The one-day-ahead ANN model 
 

IW{1,1} - Weights of the Input layer 
LW{2,1} - Weights between Layer 1 and Layer 2 
LW{3,2} - Weights between Layer 2 and Layer 3 
b{1}, b{2}, b{3} - Biases for each layer 

 
Synaptic weights and Biases are set randomly before the training begins. Output of each 
neuron was limited within [0,1] by using the Log-Sigmoid Activation function to increase 
the training efficiency. The output neuron uses a Log-Sigmoid function as well, since the 
output should be within the interval [0,1]. 
 
The network was trained for a period of 9 years from 1994 to 2002, a total data set of 3284 
input/output vector pairs, using the error back-propagation algorithm. Batch training was 
carried out for batches of six months of data, which was determined as the best batch size. 
During the training period, a limit of 100 epochs and a training mean square error of 10-30 
were set.  
 
In testing the network performance, two sets of six-monthly testing data were used to 
collaborate the six-monthly batch training. First set consisted of the first six months of 2003 
(181 Days), and the second set consisted of the last six months (184 Days). The total set 
contained 169 wet days and 196 dry days. The output of the network during the testing 
phase was interpreted as, 

 

if Xt < 0.5, day t is dry  if Xt ≥ 0.5, day t is wet 
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The prediction success rate of the network was calculated on the basis of above criteria 
using, 

 
 where Xc = Number of correct predictions,  

Xtot = Total number of predictions 
 

In addition the RMS Error of the networks were used which is defined as,  
 

            where   Xpr = Predicted Output  
                                     Xexp = Expected Output 

 
2.2 Results of One-Day-Ahead Forecasting 
 
Out of 365 days in the total data set, 271 correct predictions were made, giving a success 
rate of 74.25%. This rate is higher than the 67% obtained in reference 1 using ANN 
approach, and the 69% obtained in reference 2 using the Markov model for Colombo.  

 
Table 1: Prediction Success Rates of the one-day-ahead model 

 

Type of Forecasting Data Set 1 Data Set 2 Total Set 

Rain Classification 72.50% 76.4% 74.55% 

No Rain Classification 79.2% 68.42% 73.98% 

Total Rain / No Rain Classification 76.24% 72.28% 74.25% 
 
As illustrated in table 1, the success rate drops from 76.24% to 72.28% for the second six 
months. This behavior is expected as the network is only trained up to December 2002. The 
ability to make correct predictions drops with time even if the rainfall pattern changes very 
slightly, thus, immediate predictions have a higher tendency of being accurate. This can be 
avoided by retraining the network constantly with time, preferably each year. 
 

However, when separate predictions for two data sets are analyzed, there is a notable 
difference. No Rain classification in data set 1 is significantly high, while the rain 
classification in data set 2 is higher than that of set 1. An explanation can be provided on 
the basis of the patterns of wet and dry days in each set. The first half of the year contained 
more dry days, 101 to be exact, where long strings of dry days (‘0’ values) were present 
during March-April inter-monsoon season, thus, making a correct dry day prediction 
becomes highly likely. The second set contained a high number of rainy days, 89 to be 
exact. During the late southwest monsoon season, strings of continuous wet days (‘1’ 
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values) were present in the months of July and August, while dry days were scattered 
throughout the data set. This gives rise to a high rain classification rate and low no rain 
classification rate in set 2.  
 

 
 
 

 
 

 
 
 
 
 
 
 

Figure 3: Prediction Success Rates by month for year 2003 
 
The prediction success rate for each month is illustrated in Figure 3. The highest rate of 
90.32 was observed for December, while the lowest rate of 51.61 was observed for 
October. These unusually high and low values can be explained by the dry and wet day 
distributions in the data set. In December, only 3 wet days were present at the beginning of 
the month, and a long string of dry days thereafter. Thus the high rate occurs due to 
successful prediction of dry days within the month. October contained randomly scattered 
dry and wet days throughout the month and predictions were found relatively difficult to 
make. 
 
2.3 Multiple Steps Ahead Forecasting 
 
Using the same network, an attempt was made at predicting rainfall occurrences seven days 
into the future; namely for days t, (t+1)…up to the (t+6)th day. Here the input vector for 
each case consisted of predicted values for the rainfall occurrence for the past three days 
instead of actual values, and the (t-1)th day’s remaining weather parameters. 
 

The results closely followed the trend expected. The accuracy of each classification, along 
with the total classification should decrease with time. This is true for each case except for 
day 5 where a sudden increase in success rates can be seen.  
 

An explanation for this unusual behavior can be formulated by observing the actual test 
data. The output of the network contained a number of values near the 0.5 benchmark. As a 
result, a few successful dry day forecasts were made based on values closer to 0.47, and a 
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few wet day predictions were made on values of 0.51. This gives rise to a slightly high rate 
of success than expected, but the RMS error has still increased for day 5 beyond than that 
of day 4, indicating a continuous drop in network performance. Thus, the expected drop in 
accuracies with the number of days had prevailed. 

 
Figure 4: Variation of success rates with   Figure 5: Variation of RMS 

Errors       number of days               with number of days 
 
Rain classification rate in set 2 is higher than that of set 1 and no rain classification in set 2 
is higher than that of set 1, the same pattern as explained earlier. The success rate drops to 
almost 50% on the 7th day, thus, making forecasts beyond 7 days was found to be pointless. 
 

Although the total number of dry days was higher than wet days, long strings of wet days 
could be seen in both northeast and southwest monsoon seasons. This explains the slow 
decrement rate of rain classification with time, compared with no rain classification. 
 

Deciphered in figure 5, the RMS errors precisely follow the expected pattern, increasing 
steadily at first, and then tend to even off as the prediction success rate comes near the 50% 
mark. It can clearly be seen that the increase of success in day 5 observed earlier is purely 
by inconsistencies in the data set, as the RMS error on day 5 is consistent with the pattern. 
This RMS Error graph is a handy tool to analyze the performance of a network, and is 
unique for each network. 
An analysis of predictions during the monsoon seasons were required to explain the high 
rain classification success rates in the above model. The network was tested for the 
southwest monsoon which occurs from May to September, and the northeast monsoon from 
December to February.  
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Table 2: Rain Classification Success Rates of Monsoon Seasons 
 

Day Southwest 
Monsoon 

Northeast 
Monsoon 

Day 1 80.23% 72.22% 
Day 2 77.91% 77.77% 
Day 3 76.24% 72.22% 
Day 4 79.07% 72.22% 
Day 5 77.91% 70.59% 
Day 6 81.39% 68.75% 
Day 7 77.91% 60.00% 

 

Table 2 justifies the explanation given on high rain classification rates. During the 
southwest monsoon a total of 86 wet days were observed in 2003, and a universally high 
prediction rate is observed for rain classification, no matter the number of days ahead. 
Hence, high rain classification rates are observed in data set 2. 
 
During inter-monsoon seasons, long stretches of dry days could be seen. This gives rise to 
high no rain classification rates in set 1, as opposed to monsoons. 
 
 
3. LONG TERM FORECASTING 
 
To make the model for rainfall forecasting comprehensive, developing ANNs for making 
long term predictions were a necessity. Two such networks were developed based on the 
previously discussed one-step-ahead approach to make monthly and yearly rainfall depth 
forecasts. 
 
 

3.1 The One-Month-Ahead Model 
 

Using the same approach as the one-day-ahead model, an ANN was developed to make 
monthly rainfall depth predictions. Making actual depth predictions for each month was 
quickly found to be unfeasible as the error was too large, thus, monthly rainfall totals were 
classified into 6 categories as follows.  
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Table 3: Classification of Monthly Rainfall Depths 
 

Actual Rainfall 
Depth (mm) 

Input 
Value 

Interpretation of 
the Output Value 

0< X ≤100 0.5 0< Y ≤1.0 
100< X ≤200 1.5 1.0< Y ≤2.0 
200< X ≤300 2.5 2.0< Y ≤3.0 
300< X ≤400 3.5 3.0< Y ≤4.0 
400< X ≤500 4.5 4.0< Y ≤5.0 

X > 500 5.5 Y > 5.0 
 

The last interval was kept open ended since very few values were encountered beyond 
500mm in the data set. 
 
The Input vector comprised of rainfall depths of twelve months who are the immediate 
predecessors of the month upon which the forecasting is done, and the output vector is 
obviously the target month’s rainfall depth, as determined by table 3.  
 
The output should not be limited as setting an upper boundary on monthly rainfall depths is 
not desirable. Thus, a pure linear transfer function was used for the output neuron. For all 
other neurons, the usual Log-Sigmoid function was utilized.  
 
The network was trained for 50 years from 1949 to 1998 and testing was done for 60 
inputs, from 1999 to 2003. The network performance was analyzed using the prediction 
success rate and RMS errors.  
 

3.2 Results of the One-Month-Ahead Network 
 
Out of the 60 months used for testing, the network was able to predict 35 correctly within 
the testing basis presented in table 3. Thus, the prediction success rate was 58.33 and the 
RMS error of the network was calculated as 0.755. 
 

Table 4: Success Rates of Rainfall Depth Classification 
 
 
 
 
 
 
 
 
 

Rainfall Depth Prediction 
Success Rate 

0< X ≤100 57.89% 
100< X ≤200 66.67% 
200< X ≤300 62.50% 
300< X ≤400 25.00% 
400< X ≤500 00.00% 

X > 500 50.00% 
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According to table 4, the success rates are somewhat similar up to a 300mm depth. Rates 
beyond them cannot be viably interpreted as there were only 4, 1 and 2 months in each of 
the last data sets. For example, the network wasn’t able to make a successful prediction for 
the single month in the 400<X≤500 range, producing a 0% rate. However, this is due to the 
limitations of the data set, and doesn’t necessarily indicate no correct prediction for that 
range is possible. 
 
Multiple steps ahead forecasting was attempted for several months into the future using the 
same network. 

 

 
 

Figure 6: Variation of Success Rates                       Figure 7: Variation of RMS Errors 
     with number of months                          with number of months 

 
By the 10th month, the network correctly predicts only one value for five inputs. Thus, 
further steps into the future were deemed unfeasible.  
 
Expected behavior is met with only slight deviations. Up to the fourth month, the decrease 
in the success rates and the increase in RMS errors are as expected. But within the next few 
months, both parameters tend to show a slightly erratic behavior, which an effect probably 
brought on by the complications in the data sets used. However, the general trend is clear 
from the figures. 
 
3.3 The One-Year-Ahead Model 
 

Unlike the previous models, making actual depth predictions were found to be viable. The 
Input vector comprised of rainfall depths of ten years who are the immediate predecessors 

2 4 6 8 10

Number of Months

20

25

30

35

40

45

50

55

60

Pr
ed

ic
tio

n 
Su

cc
es

s 
R

at
e

2 4 6 8 10

Number of Months

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

R
M

S 
Er

ro
r



Proceedings of the Technical Sessions, 22 (2006) 1-16 
Institute of Physics – Sri Lanka 
 
 

Rainfall Forecasting: An Artificial Neural Network Approach 
 

12

of the year upon which the forecasting is done, and the output vector is the target year’s 
rainfall depth. 
 

The network was trained for a period of 105 years, from 1869 to 1973, using the error back-
propagation algorithm, and was tested for a separate data set of 30 years from 1974 to 2003. 
A new parameter, the percentage error was introduced in analyzing the one-year-ahead 
network 
 

100
X

)X(XError Percentage
A

AP ×
−

=  , Where XP = Prediction, XA = Actual Value 

 

In the case of total prediction accuracy, absolute values of the percentage errors were used 
in order to prevent the positive and negative errors being compensated for each other for 
the whole network.  
 

Out of the 30 annual depths tested for, the network successfully predicted 23 depths within 
an error of ±100, approximately 5% of the mean annual rainfall depth within the total 
period. 
 

Thus, the prediction success rate for the network is (23/30)*100 = 76.67% and the RMS 
error was calculated as 0.267. The absolute percentage error was found to be 6.99%. 
 
3.4 Results of the One-Year-Ahead Model 
 
Figure 8 compares the actual annual rainfall depths with the predicted depths for the testing 
period from 1974 to 2003. Deviations from actual values tend to increase slightly when the 
year moves away from the last training year of 1973, for the same reasons explained in the 
one-day-ahead network. Two large positive deviations can bee seen for years 2001 and 
1995. 
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Figure 8: Actual and Predicted Rainfall Depths for 1974-2003 

 

In both these years, severe droughts were experienced, limiting the rainfall amounts 
throughout the country [6]. The network is not equipped to handle such incidents and its 
predictions point out the annual rainfall depths for 2001 and 1995 if the natural pattern had 
prevailed. 
 
 
          
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Percentage Error of each year 
 
The percentage error plot clearly shows that the bulk of the predictions have percentage 
errors between ±5. The stray value for 2001 (62% error) was ignored for the clarity of 
figure 9 as it enlarged the Y axis scale and the graph became indistinct.  

 
Table 5 indicates the success rates of the network for multiple time steps ahead forecasting. 
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Table 5: Success Rates for multiple steps ahead forecasting 

 

 
 
 
 
 
 
 
 

 
The success rate drops by more than a half by the second year. Though the success rate 
slightly increases for year 4, both the RMS error and the Absolute Percentage Error indicate 
that the network performance is still rapidly decreasing. The rapid drop of rates is owing to 
the fact that the actual depths are being predicted, rather than rainfall occurrence or depth 
categories like in previous models. The relatively large prediction errors for first year depth 
forecasts present in the network for years 1978, 1989-90, 1995-96 and 2001 highly affect 
the entire multiple steps ahead predictions. At least one of these large errors is present in 
most of the inputs vectors used in testing, thus higher order forecasting successes quickly 
perish. By year 5, only one depth was predicted correctly out of 26 predictions.  
 

Thus, this network should not be extended for forecasting beyond 2 years ahead, as 
accuracies become exceedingly low. 
 
 
4. DISCUSSION AND CONCLUSIONS 
 

• The One-Day-Ahead network is successful in forecasting the rainfall occurrence of 
the next day, with a success rate of 74.25%. When the model was extended for 
multiple days ahead, the success rate of the network decreased and RMS error 
increased with the number of days. Seven days was the limit up to where reasonable 
predictions could be made. 

 
• The One-Month-Ahead network was reasonably successful in forecasting the next 

month’s rainfall depth category with a success rate of 58.33% within a ±50mm error 
limit. Extension for multiple months into the future produced the same result as 
above. The success rate dropped to 41% within 6 months into the future. 

 

Year Prediction Success 
Rate RMS Error Absolute 

Percentage Error 
Year 1 76.67% 0.267 6.99% 
Year 2 31.03% 0.598 15.89% 
Year 3 17.86% 0.889 26.93% 
Year 4 18.52% 1.121 37.65% 
Year 5 3.85% 2.254 68.16% 
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• The One-Year-Ahead network is highly successful in forecasting the annual rainfall 
depth of the next year, with a success rate of 76.67% within a ±100mm error limit. 
When the stray values for droughts in 2001 and 1995-96 are ignored, the rate 
increased to 83.33%. The network performance dropped rapidly when multiple 
years ahead predictions were made. Hence, this model ideally should not be used 
beyond the second year into the future. 

 
• The ability for actual rainfall depth prediction using the feed-forward back-

propagation ANN models used for this research showed a tendency to be 
significantly improved when forecasting over long time periods was done. Yearly 
depths could be accurately predicted while monthly depths could be predicted only 
when classified into different categories, and daily predictions could be made only 
for occurrence. 

 
• Using ground level data undoubtedly reduced the accuracy of predictions. However, 

this problem is impenetrable since cloud level data is not available adequately to 
train such a network. An alternate approach would be to combine ANNs for several 
whether stations close by, making a multiple point forecasting network which 
would eliminate hectic variations in spatial coordinates [7].   

 
Acknowledgements: Financial assistance by National Science Foundation, Sri Lanka (NSF 
grant number RG/2000/P/01) is acknowledged.  
 
REFERENCES 

1. Dharmaratne W.G.D. and Premarathna L.D., Development of a Rainfall forecasting 
model for Sri Lanka using Artificial Feed-Forward Neural Network, Proceedings of 
the 2nd Science Symposium-University of Ruhuna, Sri Lanka (2004) 29-36  

2. Perera, H.K.W.I., Sonnadara, D.U.J. and Jayewardene, D.R., Forecasting the 
Occurrence of Rainfall in Selected Weather Stations in the Wet and Dry Zones of 
Sri Lanka, Sri Lankan J. Physics, 3 (2002) 39-53 

3. Philip, N.S. and Joseph K.B., A Neural Network tool for analyzing trends in 
rainfall, Computers & Geosciences, 29 (2002) 215-223 

4. Luk, K.C., Ball, J.E. and Sharma, A., An Application of Artificial Neural Networks 
for Rainfall Forecasting , Mathematical and Computer Modeling, 33 (2001) 683-
693 

5. Haykin, S. Neural Networks: A Comprehensive Foundation, Prentice-Hall Inc, 
(1999) 2nd Edition   



Proceedings of the Technical Sessions, 22 (2006) 1-16 
Institute of Physics – Sri Lanka 
 
 

Rainfall Forecasting: An Artificial Neural Network Approach 
 

16

6. Hettiarachchi N.D. , National Disaster management policy: Implications for 
Development, Proceedings of Conference on Natural Disaster Management, Sri 
Lanka (2004) 28-41 

7. James, N.K.L. and Raymond S.T.L., Rainfall forecasting from Multiple Point 
Sources using Neural Networks, IEEE journal, (1999) 429-434 

 


